Open Access Open Access  Restricted Access Subscription or Fee Access


Water Quality and Wet Season Diatom Assemblage Characteristics from the Tamiami Trail Pilot Swales Sites (Everglades National Park, Florida, USA)



A pivotal component of hydrological restoration of the Florida Everglades is the improvement of water conveyance to Everglades National Park by the degradation of the current network of canals, roadways and levees. The Tamiami Trail (L29) road/canal complex represents a major barrier to natural water flows into the park and a variety of modification options for flow improvement are currently being explored, including the installation of spreader swales immediately downstream of culverts conveying water under Tamiami Trail from the L29 canal into Everglades National Park. In this study, we evaluated water column chemistry and wet-season diatom community structure to provide baseline information for use in future monitoring activities related to the proposed Tamiami Trail modifications. Water chemistry showed pronounced fluctuations in response to precipitation and anthropogenically mediated hydrological events. Differences in water quality variables among sites were dampened during periods of inundation, and became more pronounced during periods of low canal stage, suggesting the importance of small-scale mechanisms related to isolation of habitat patches. Diatom assemblages were unexpectedly speciose (127 taxa in 40 samples) compared to typical Everglades assemblages, and spatially heterogeneous in sites associated with concentric areas of dense vegetation immediately downstream of culverts. We also observed significant compositional dissimilarities among transects, indicating that culvert pool and north transect assemblages were substantially influenced by propagule input from the canal and areas to the north, while south transect sites were compositionally similar to typical sawgrass prairie diatom communities. Central transect sites were compositionally intermediate to their north and south counterparts. We propose that the position and spatial extent of this “transitional assemblage” is a sensitive indicator of subtle environmental change related to Tamiami Trail modifications.


Florida Everglades, Comprehensive Everglades Restoration Plan (CERP), diatoms, wetlands, water management

Full Text:

PDF/A (2.86 MB)


Blake, N.M. (1980) Land into Water – Water into Land: A History of Water Management in Florida. University Presses of Florida, Tallahassee.

Bramburger, A.J., Haffner, G.D. & Hamilton, P.B. (2004) Examining the distributional patterns of the diatom flora of the Malili Lakes, Sulwesi Island, Indonesia. In Poulin, M. (ed.) Proceedings of the 17th International Diatom Symposium. Biopress Ltd., Bristol, pp. 11–17.

Bramburger, A.J., Hamilton, P.B., Hehanussa, P.E. & Haffner, G.D. (2008) Spatial patterns of planktonic and benthic diatom distribution and assemblage similarity in Lake Matano (Sulawesi Island, Indonesia). In: Likhoshway, Ye. (ed.) Proceedings of the 19th International Diatom Symposium. Biopress, Bristol, pp. 1–13.

Childers, D.L., Doren, R.F., Noe, R.F., Rugge, M. & Scinto, L.J. (2003) Decadal change in vegetation and soil phosphorus patterns across the Everglades landscape. Journal of Environmental Quality 32: 344–362.

Cleve, P.T. & Grunow, A. (1880) Beiträge zur Kenntniss der Arctischen Diatomeen. Kongliga Svenska-Vetenskaps Akademiens Handlingar 17(2): 121 pp., 7 pls.

Connell, J.H. & Orias, E. (1964) The ecological regulation of species diversity. The American Naturalist 98: 399–414.

Cooper, S.R., Huvane, J., Vaithiyanathan, P. & Richardson, C.J. (1999) Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA. Journal of Paleolimnology 22: 413–437.

Dixit, S.S. & Smol, J.P. (1993) Diatoms as indicators in the Environmental Monitoring and Assessment Program – Surface Waters (EMAP-SW). Environmental Monitoring and Assessment 31: 275–307.

Donar, C.M., Condon, K.W., Gantar, M. & Gaiser, E.E. (2004) A new technique for examining the physical structure of Everglades floating periphyton mat. Nova Hedwigia 78: 107–119.

Ehrenberg, C.G. (1843) Verbreitung und Einflufs des mikroskopischen Lebens in Süd-und Nord-Amerika. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1841: 291–445, 4 pls.

Gaiser, E. (2009) Periphyton as an indicator of restoration in the Everglades. Ecological Indicators 9: S37–S45.

Gaiser, E.E., Scinto, L.J., Richards, J.H., Jayachandran, K., Childers, D.L., Trexler, J.C. & Jones, R.D. (2004) Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research 38: 507–516.

Gaiser, E.E., Trexler, J.C., Richards, J.H., Childers, D.L., Lee, D., Edwards, A.L., Scinto, L.J., Jayachandran, K., Noe, G.B. & Jones, R.D. (2005) Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34: 717–723.

Gaiser, E.E., Richards, J.H., Trexler, J.C., Jones, R.D. & Childers, D.L. (2006a) Periphyton responses to eutrophication in the Florida Everglades: Cross-system patterns of structural and compositional change. Limnology and Oceanography 51: 617–630.

Gaiser, E.E., Zafiris, A., Ruiz, P.L., Tobias, F. & Ross, M.S. (2006b) Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569: 237–257.

Gaiser, E.E., McCormick, P.V., Hagerthey, S.E. & Gottlieb, A.D. (2011) Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41(Supplement 1): 92–120.

Gaiser, E., Trexler, J. & Wetzel, P. (2011) The Everglades. In Batzer, D. and A. Baldwin (eds). Wetland habitats of North America: Ecology and Conservation Concerns. University of California Press, Berkeley.

Gottlieb, A. Richards, J. & Gaiser, E.E. (2005) Effects of dessication duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton mats. Aquatic Botany 82: 99–112.

Grunow, A. (1862) Die österreichischen Diatomaceen nebst Anschluss einiger neuen Arten von andern Lokalitäten und einer kritischen Uebersicht der bisher bekannten Gattungen und Arten. Erste Folge. Epithemieae, Meridioneae, Diatomeae, Entopyleae, Surirelleae, Amphipleureae. Zweite Folge. Familie Nitzschieae. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 12: 315–472, 545–588, 7 pls.

Hagerthey, S.E., Bellinger, B.J., Wheeler, K., Gantar, M. & Gaiser, E. (2011) Everglades periphyton: A biogeochemical perspective. Critical Reviews in Environmental Science and Technology 41(Supplement 1): 309–343.

Hollander, G.M. (2008) Raising Cane in the ‘Glades: The Global Sugar Trade and the Transformation of Florida. University of Chicago Press, Chicago.

Johnson, M.P. & Simberloff, D.S. (1974) Environmental determinants of island species numbers in the British Isles. Journal of Biogeography 1: 149–154.

Krammer, K. (1997) Die cymbelloiden Diatomeen. Ein Monographie der weltweit bekannten Taxa. Teil 2. Encyonema part., Encyonopsis and Cymbellopsis. Bibliotheca Diatomologica 37: 463 pp

Kützing, F.T. (1844) Die Kieselschaligen. Bacillarien oder Diatomeen. Nordhausen. 152 pp., 30 pls.

La Hee, J.M. (2010) "The Influence of Phosphorus on Periphyton Mats from the Everglades and Three Tropical Karstic Wetlands". FIU Electronic Theses and Dissertations. Paper 251.

Lange-Bertalot, H. (1979) Pollution tolerance as a criterion for water quality estimation. Nova Hedwigia 64: 285–304.

Lange-Bertalot, H. (1993) 85 neue taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa, Vol. 2/1–4. Bibliotheca Diatomologica 27: 164 pp., 134 pls.

Lange-Bertalot, H. & Moser, G. (1994) Brachysira. Monographie der Gattung. Bibliotheca Diatomologica 29: 1–212.

Leclercq, L. (1988) Utilisation de trois indices, chimique, diatomique et biocénotique, pour l’évaluation de la qualité de l’eau de la Joncquiere, rivière calcaire polluée par le village de Doische (Belgique, Prov. Namur) Mémoires de la Société Royale de Botanique de Belgique. 10: 26–34.

Light, S.S. & Dineen, J.W. (1994) Water control in the Everglades: a historical perspective. In, Davis, S.M. and J.C. Ogden (eds). Everglades. The Ecosystem and its Restoration. St. Lucy Press, Delray Beach.

Lodge T.E. (2010) The Everglades Handbook: Understanding the Ecosystem, 3rd Ed. CRC Press, Boca Raton.

MacArthur, R.H. & MacArthur, J.W. (1961) On bird species diversity. Ecology 42: 594–598.

McCormick, P.V., & O'Dell, M.B. (1996) Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological Society. 15: 450–468.

McCormick, P.V., Newman, S. & Vilcheck, L.W. (2009) Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia. 621: 105–114.

Noe, G.B., Childers, D.L. & Jones, R.D. (2001) Phoshorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique? Ecosystems 4: 603–624.

Pan, Y., Stevenson, R.J., Vaithiyanathan, P., Slate, J. & Richardson, C.J. (2000) Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biology 44: 339–353.

Pianka, E.R. (1964) Lizard species density in the Kalahari Desert. Ecology 52: 1024–1029.

Raschke, R.L. (1993) Diatom (Bacillariophyta) community response to phosphorus in the Everglades National Park, USA. Phycologia 32: 48–58.

RECOVER. (2005) Assessment Strategy for the Monitoring and Assessment Plan. United States Army Corps of Engineers, Jacksonville District, Jacksonville, Florida, and South Florida Water Management District, West Palm Beach, Florida.

Richardson, C.J. (2008) The Everglades experiments: lessons for ecosystem restoration. Springer, New York.

Richardson, C.J. (2010) The Everglades: North America’s subtropical wetland. Wetlands Ecological Management 18: 517–542.

Ross, M.S., Meeder, J.F., Sah, J.P., Ruiz, P.L. & Telesnicki, G.J. (2000) The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.

Ross, M.S., Gaiser, E.E., Meeder, J.F. & Lewin, M.T. (2001) Multi-taxon analysis of the "white zone", a common ecotonal feature of South Florida coastal wetlands. In Porter, J. & K. Porter (Eds). The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton. pp. 205–238.

Round, F.E. (1991) Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.

Saunders, C.J., Gao, M., Lynch, J., Jaffe, R. & Childers, D.L. (2006) Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. Hydrobiologia 569: 475–492.

Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical Journal 27: 379–423, 623–656.

Sklar, F., McVoy, C., VanZee, R., Gawlik, D.E., Tarboton, K., Rudnick, D.S. Miao & Armentano, T. (2001) The effects of altered hydrology on the ecology of the Everglades. In Porter, J. and K. Porter (eds). The Everglades, Florida Bay and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton. 1000 pp.

Sklar, F.C., Chimney, M.J., Newman, S., McCormick, P., Gawlik, D., Miao, S., McVoy, C., Said, W., Newman, J., Coronado, C., Crozier, G., Korvela, M. & Rutchey, K. (2005) The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.

Slate, J.E. & Stevenson, R.J. (2000) Recent and abrupt environmental change in the Florida Everglades indicated from siliceous subfossils. Wetlands 20: 346–356.[0346:RAAECI]2.0.CO;2

Smith E.P. & McCormick, P.V. (2001) Long-term relationship between phorphorus inputs and wetland phosphorus concentrations in a northern Everglades marsh. Environmental Monitoring & Assessment 68: 153–176.

Smith, W. (1856) Synopsis of British Diatomaceae. John Van Voorst, London 1856. 2: 107 pp., pls. 32–60, 61–62, A–E.

Solórzano, L. & Sharp, J.H. (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.

South Florida Water Management District (1998) Facility and Infrastructure Location Index Map.

Steinman, A.D., Havens, K.E., Carrick, H.J. & Van Zee, R. (2002) The past, present, and future hydrology and ecology of Lake Okeechobee and is watersheds, In: Porter, J.W. & Porter, K.G. (eds) The Everglades, Florida Bay, and coral reefs of the Florida Keys: an ecosystem sourcebook. CRC, Boca Raton.

Taniguchi, H. & Tokeshi, M. (2004) Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.

Van Heurck, H. (1880) Synopsis des Diatomées de Belgique. Atlas. Ducaju & Cie., Anvers. pls 1–30.

Winkler, M.G., Sanford, P.R. & Kaplan, S.W. (2001) Hydrology, vegetation, and climate change in the Southern Everglades during the Holocene. In: Wardlaw, B. R. (ed.) Bulletins of American Paleontology 361: 57–98.


  • There are currently no refbacks.

ISSN 1179-3155 (print); ISSN 1179-3163 (online)

Published by Magnolia Press, Auckland, New Zealand