Open Access Open Access  Restricted Access Subscription or Fee Access


DOI: http://dx.doi.org/10.11646/phytotaxa.163.5.1

Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus

Radka Muhlsteinova, Jeffrey R. Johansen, Nicole Pietrasiak, Michael P. Martin, Karina Osorio-Santos, Steven D. Warren

Abstract


Little is known about the taxonomic diversity of cyanobacteria in deserts, despite their important ecological roles in these ecosystems. In this study, cyanobacterial strains from the Atacama, Colorado, and Mojave Deserts were isolated and characterized using molecular, morphological, and ecological information. Phylogenetic placement of these strains was revealed through Bayesian and parsimony-based phylogenetic analyses utilizing sequences of the 16S rRNA gene and the associated 16S–23S ITS region. Based on the combined evidence of this polyphasic approach, a new species from desert soils morphologically corresponding to the genus Trichocoleus was described. Trichocoleus desertorum sp. nov. Mühlsteinová, Johansen et Pietrasiak was used to obtain a phylogenetic reference point for Trichocoleus, a genus so far characterized by morphological description only. Through characterization of this new taxon in desert soils we hope to contribute to the general understanding of cyanobacterial diversity in extreme arid habitats.


Keywords


Cyanobacteria; Pseudanabaenales; Trichocoleus; desert soil; biological soil crust

References


Anagnostidis, K. (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia 73: 359–375.

Anagnostidis, K. & Komárek, J. (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie, Supplement 80: 327–472.

Azúa-Bustos, A., González-Silva, C., Mancilla, R.A., Salas, L., Gómez-Silva, B., McKay, C.P. & Vicuña, R. (2011) Hypolithic cyanobacteria supported mainly by fog in the Coastal Range of the Atacama Desert. Microbial Ecology 61: 568–581.

http://dx.doi.org/10.1007/s00248-010-9784-5

Belnap, J. & Gardner, J.S. (1993) Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist 53: 40–47.

Bohunická, M., Johansen, J.R. & Fučíková, K. (2011) Tapinothrix clintonii sp. nov. (Pseudanabaenaceae, Cyanobacteria), a new species at the nexus five genera. Fottea 11: 127–140.

Boyer, S.L., Flechtner, V.R. & Johansen, J.R. (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution 18: 1057–1069.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a003877

Boyer, S.L., Johansen, J.R., Flechtner, V.R. & Howard, G.L. (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. Journal of Phycology 38: 1222–1235.

http://dx.doi.org/10.1046/j.1529-8817.2002.01168.x

Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K., Salisch, M., Reisser, W. & Weber, B. (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology 57: 229–247.
http://dx.doi.org/10.1007/s00248-008-9449-9

Carmichael, W.W. (1986) Isolation, culture and toxicity testing of toxic freshwater cyanobacteria (blue-green algae) In: Shilov, V. (eds.) Fundamental Research in Homogenous Catalysis 3. Gordon & Breach, New York, 1249–1262.

Casamatta, D.A., Johansen, J.R., Vis, M.L. & Broadwater, S.T. (2005) Molecular and ultrastructural characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). Journal of Phycology 41: 421–438.
http://dx.doi.org/10.1111/j.1529-8817.2005.04062.x

De Clerck, O., Guiry, M.D., Leliaert, F., Samyn, Y. & Verbruggen, H. (2013) Algal taxonomy: A road to nowhere? Journal of Phycology 49: 215–225.

http://dx.doi.org/10.1111/jpy.12020

Evans, R.D. & Johansen, J.R. (1999) Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences 18: 183–225.
http://dx.doi.org/10.1016/S0735- 2689(99)00384-6

Flechtner, V.R., Boyer, S.L., Johansen, J.R. & Denoble, M.L. (2002) Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia 74: 1–24.
http://dx.doi.org/10.1127/0029- 5035/2002/0074-0001

Flechtner, V.R., Johansen, J.R. & Belnap, J. (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. Western North American Naturalist 68: 405–436.
http://dx.doi.org/10.3398/1527- 0904-68.4.405

Forti, A. (1907) Myxophyceae. In: De Toni J.B. (ed.) Sylloge algarum omnium. Vol. V. Padova, 761 pp.

Garcia-Pichel, F., Lopez-Cortes, A. & Nubel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Applied and Environmental Microbiology 67: 1902–1910.
http://dx.doi.org/10.1128/AEM.67.4.1902-1910.2001

Garcia-Pichel, F. & Wojciechowski, M.F. (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize erodible substrates. PLoS ONE 4: e7801.
http://dx.doi.org/10.1371/journal.pone.0007801.

Gomont, M. (1892) Monographie des Oscillariées (Nostocacées homocystées). Annales des Sciences Naturelles, Botanique, Séries 7 15: 263–368.

Hoffmann, L., Komárek, J. & Kaštovský, J. (2005) System of cyanoprokaryotes (cyanobacteria) – state in 2004. Algological Studies 117: 95–115.
http://dx.doi.org/10.1127/1864-1318/2005/0117-0095

Johansen, J.R. & Casamatta, D.A. (2005) Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies 117: 71–93.
http://dx.doi.org/10.1127/1864-1318/2005/0117-0071

Johansen, J.R., Kovacik, L., Casamatta, D.A., Fučíková, K. & Kaštovský, J. (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92: 283–302.
http://dx.doi.org/10.1127/0029-5035/2011/0092-0283

Johansen, J.R., Olsen, C.E., Lowe, R.L., Fučíková, K. & Casanatta, D.A. (2008) Leptolyngbya species from selected seep walls in the Great Smoky Mountains National Park. Algological Studies 126: 21–36.
http://dx.doi.org/10.1127/1864- 1318/2008/0126-0021

Johansen, J.R., Řeháková, K. & Acker, F. (2011) Tapinothrix ozarkiana sp. nov., with notes on distribution for the genus in North America. Fottea 11: 141–148.

Johansen, J.R., St. Clair, L.L., Webb, B.L. & Nebeker, G.T. (1984) Recovery patterns of cryptogamic soil crusts in desert rangelands following fire disturbance. The Bryologist 87: 238–243.

http://dx.doi.org/10.2307/3242798

Karsten, U. & Garcia-Pichel, F. (1996) Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): A chemosystematic study. Systematic and Applied Microbiology 19: 285–294.
http://dx.doi.org/10.1016/s0723-2020(96)80054-3

Kaštovský, J. & Johansen, J.R. (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil- inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47: 307–320.

http://dx.doi.org/10.2216/ph07-69.1

Komárek, J. & Anagnostidis, K. (2005) Cyanoprokaryota II. In: Büdel, B., Krienitz, L., Gärtner, G. & Schagerl, M. (eds.) Süsswasserflora von Mittleuropa 19/2. Elsevier/Spektrum, München, 759 pp.

Lange, O.L., Kidron, G.J., Büdel, B., Meyer, A., Killian, E. & Abeliovich, A. (1992) Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in western Negev Desert. Functional Ecology 6: 519–527.

http://dx.doi.org/10.2307/2390048

Lange, O.L., Meyer, A. & Büdel, B. (1994) Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Functional Ecology 8: 52–57.
http://dx.doi.org/10.2307/2390111

Li, Z. & Brand, J. (2007) Leptolyngbya nodulosa sp. nov. (Oscillatoriaceae), a subtropical marine cyanobacterium that produces a unique multicellular structure. Phycologia 46: 396–401.
http://dx.doi.org/10.2216/06-89.1

Lukešová, A., Johansen, J.R., Martin, M.P. & Casamatta, D.A. (2009) Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 48: 118–129.
http://dx.doi.org/10.2216/08-56.1

Maya, Y., Lopez-Cortes, A. & Soeldner, A. (2002) Cyanobacterial microbiotic crusts in eroded soils of a tropical dry forest in the Baja California peninsula, Mexico. Geomicrobiology Journal 19: 505–518.
http://dx.doi.org/10.1080/01490450290098469

Mühlsteinová, R., Johansen, J.R., Pietrasiak, N. & Martin, P.M. (2014) Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa (accepted).

Navarro-González, R., Rainley, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., De La Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L., Gomez-Silva, B. & McKay, C.P. (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302: 1018–1021.
http://dx.doi.org/10.1126/science.1089143

Page, R.D.M. (2012) Dark taxa: GenBank in a post-taxonomic world. Available at http://iphylo.blogspot.be/2011/04/dark-taxa-genbank-in-post-taxonomic.html (last accessed June 19, 2013)

Pearson, J.E. & Kingsbury, J.M. (1966) Culturally induced variation in four morphologically diverse bluegreen algae. American Journal of Botany 53: 192–200.
http://dx.doi.org/10.2307/2440088

Perkerson III, R.B., Johansen, J.R., Kováčik, L., Brand, J., Kaštovský, J. & Casamatta, D.A. (2011) A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology 47: 1397–1412.
http://dx.doi.org/10.1111/j.1529-8817.2011.01077.x

Phillipson, J. (1935) Some algae of Victorian soils. Proceedings of the Royal Society of Victoria 47: 262–287.

Rambaut, A. (2007) Fig Tree. Available at http://tree.bio.ed.ac.uk/software/figtree (last accessed 28 February 2014)

Řeháková, K., Johansen, J.R., Casamatta, D.A., Li, X. & Vincent, J. (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: Three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46: 481–502.
http://dx.doi.org/10.2216/06-92.1

Rippka, R., Waterbury, J. & Cohez-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. Archives for Microbiology 100: 419–436.
http://dx.doi.org/10.1007/bf00446333

Sauvageau, C. (1892) Sur les algues d’eau douce recoltées en Algérie pendant le session de la Societé Botanique en 1892. Bulletin de la Société Botanique de France 39: CIV–CXXVIII.

Siegesmund, M.A., Johansen, J.R., Karsten, U. & Friedl, T. (2008) Coleofasciculus gen. nov. (Cyanobacteria): Morphological and molecular criteria for revision of the genus Microcoleus Gomont. Journal of Phycology 44: 1572–1585.
http://dx.doi.org/10.1111/j.1529-8817.2008.00604.x

Starkenburg, S.R., Reitenga, K.G., Freitas, T., Johnson, S., Chain, P.S.G., Garcia-Pichel, F. & Kuske, C.R. (2011) Genome of the Cyanobacterium Microcoleus vaginatus FGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide. Journal of Bacteriology 193: 4569–4570.
http://dx.doi.org/10.1128/jb.05138-11

Strunecký, O., Elster, J. & Komárek, J. (2011) Taxonomic revision of the freshwater cyanobacterium Phormidium” murrayi = Wilmottia murrayi. Fottea 11: 57–71.

Strunecký, O., Komárek, J., Johansen, J.R., Lukešová, A. & Elster, J. (2013) Molecular and morphological criteria for revision of the genus Microcoleus and its relation to Phormidium autumnale, Cyanobacteria. Journal of Phycology 49: 1167–1180.
http://dx.doi.org/10.1111/jpy.12128

Swofford, D.L. (1998) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Sunderland.

Vaucher, J.P.E. (1803) Histoire des conferves d’eau douce contenant leurs différens modes de reproduction, et la description de leurs principales espèces, suivie de l’histoire des trémelles et des ulves d’eau douce. J.J. Paschoud, Geneva, 285 pp.
http://dx.doi.org/10.5962/bhl.title.11425

Warren-Rhodes, K.A., Dungan, J.L., Piatek, J., Stubbs, K., Gomez-Silva, B., Chen, Y. & McKay, C.P. (2007) Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert, Chile. Journal of Geophysical Research 112: G04S15.
http://dx.doi.org/10.1029/2006jg000305

West, W. & West, G.S. (1896) On some new and interesting freshwater algae. Journal of the Royal Microscopical Society 16: 149–156.
http://dx.doi.org/10.1111/j.1365-2818.1896.tb00891.x

West, W. & West, G.S. (1897) Welwitsch’s African freshwater algae. Journal of Botany 35: 264–272.

Wierzchos, J., Ascaso, C. & McKay, C.P. (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6: 415–422.

http://dx.doi.org/10.1089/ast.2006.6.415

Zammit, G., Billi, D. & Albertano, P. (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. European Journal of Phycology 47: 341–354.
http://dx.doi.org/10.1080/09670262.2012.717106

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Research 31: 3406–3415.
http://dx.doi.org/10.1093/nar/gkg595


Refbacks

  • There are currently no refbacks.


ISSN 1179-3155 (print); ISSN 1179-3163 (online)

Published by Magnolia Press, Auckland, New Zealand