Open Access Open Access  Restricted Access Subscription or Fee Access


DOI: http://dx.doi.org/10.11646/phytotaxa.362.1.2

Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses

THOMAS PRÖSCHOLD, TATYANA DARIENKO, LOTHAR KRIENITZ, ANNETTE W. COLEMAN

Abstract


Chlamydomonas in the traditional sense is one of the largest green algal genera, comprising more than 500 described species. However, since the designation of the model organism C. reinhardtii as conserved type of this genus in 2007, only two species remained in Chlamydomonas. Investigations of three new strains isolated from soil samples, which were collected near Lake Nakuru (Kenya), demonstrated that the isolates represent a new species of Chlamydomonas. Phylogenetic analyses of nuclear SSU and ITS rDNA and plastid-coding rbcL sequences have clearly revealed that this species is closely related to C. reinhardtii and C. incerta. These results were confirmed by cross experiments of sporangium wall autolysins (VLE). All species belonged to the VLE group 1 sensu Schlösser. The comparison of the ITS-1 and ITS-2 secondary structures showed several compensatory base changes among the three species. In addition, the rbcL amino acid composition was also species-specific. The genus Chlamydomonas was phylogenetically closely related to the colonial families Goniaceae, Tetrabaenaceae and Volvocaceae. Chlamydomonas debaryana (VLE group 2) formed a separate clade among these colonial families of the Volvocales, a species of which autolysin dissolved the sporangium walls of the members of VLE group 1, suggesting its close relationship to Chlamydomonas. As consequence of our results, we propose Chlamydomonas schloesseri sp. nov. for the new Kenyan isolates. We also propose a new combination of C. debaryana to the newly erected genus Edaphochlamys.


Keywords


integrative taxonomy, Chlamydomonas, intraspecific variation, species concept, DNA barcoding, Algae

References


Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

https://doi.org/10.1109/TAC.1974.1100705

Buchheim, M.A., Buchheim, J.A. & Chapman, R.L. (1997) Phylogeny of the VLE-14 Chlamydomonas (Chlorophyceae) group: a study of 18S rRNA gene sequences. Journal of Phycology 33: 1024–1030.

https://doi.org/10.1111/j.0022-3646.1997.01024.x

Claes, H. (1971) Autolyse der Zellwand bei den Gameten von Chlamydomonas reinhardii. Archiv für Mikrobiologie 78: 180–188.

https://doi.org/10.1007/BF00424874

Coleman, A.W. (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151: 1–9.

https://doi.org/10.1078/1434-4610-00002

Coleman, A.W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19: 370–375.

https://doi.org/10.1016/S0168-9525(03)00118-5

Coleman, A.W. (2009) Is there a molecular key to the level of biological species in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50: 197–203.

https://doi.org/10.1016/j.ympev.2008.10.008

Coleman, A.W. & Mai, J.C. (1997) Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. Journal of Molecular Evolution 45: 168–177.

https://doi.org/10.1007/PL00006217

Cote, C.A., Greer, C.L. & Peculis, B.A. (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8: 786–797.

https://doi.org/10.1017/S1355838202023063

Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLOS One 10: e0127838.

https://doi.org/10.1371/journal.pone.0127838

Darienko, T., Gustavs, L. & Pröschold, T. (2016) Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. Journal of Phycology 52: 1125–1145.

https://doi.org/10.1111/jpy.12481

Demchenko, E., Mikhailyuk, T., Coleman, A.W. & Pröschold, T. (2012) Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. European Journal of Phycology 47: 264–290.

https://doi.org/10.1080/09670262.2012.678388

Do, C.B., Woods, D.A. & Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22: e90–e98.

https://doi.org/10.1093/bioinformatics/btl246

Ettl, H. (1965) Beitrag zur Kenntnis der Morphologie der Gattung Chlamydomonas Ehrenberg. Archiv für Protistenkunde 107: 271–430.

Ettl, H. (1976) Die Gattung Chlamydomonas Ehrenberg (Chlamydomonas und die nächstverwandten Gattungen II). Beiheifte zur Nova Hedwigia 49: 1–1122.

Ettl, H. (1979) Die Protoplastenteilung und der Verlauf der Chloroplastenteilung während der asexuellen Fortpflanzung von Chlamydomonas (Volvocales, Chlorophyceae). Algological Studies 22: 40–113.

Ettl, H. (1981) Die neue Klasse Chlamydophyceae, eine natürliche Gruppe der Grünalgen (Chlorophyta). Plant Systematics and Evolution 137: 107–126.

https://doi.org/10.1007/BF00983209

Ettl, H. (1983) Chlorophyta I- Phytomonadina. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.) Süßwasserflora von Mitteleuropa. Bd. 9. Gustav Fischer, Stuttgart, New York, pp. 1–807.

Ettl, H. & Schlösser, U.G. (1992) Towards a revision of the systematics of the genus Chlamydomonas (Chlorophyta). 1. Chlamydomonas applanata Pringsheim. Botanica Acta 105: 323–330.

https://doi.org/10.1111/j.1438-8677.1992.tb00306.x

Gibson, A., Gowri-Shankar, V., Higgs, P. & Rattray, M. (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Molecular Biology and Evolution 22: 251–264.

https://doi.org/10.1093/molbev/msi012

Gordon, J., Rumpf, R., Shank, S.L., Vernon, D. & Birky Jr, C.W. (1995) Sequences of the RRN 18 genes of Chlamydomonas humicola and C. dysosmos are identical, in agreement with their combination in the species C. applanata (Chlorophyta). Journal of Phycology 31: 312–313.

https://doi.org/10.1111/j.0022-3646.1995.00312.x

Goroschankin, I.N. (1891) Beiträge zur Kenntnis der Morphologie und Systematik der Chlamydomonaden. II. Chlamydomonas reinhardi Dang. und seine Verwandten. Bulletin de la Société Impériale de Mouscou, Nouvelle Série 5: 101–142.

Harris, E.H., Boynton, J.E., Gillham, N.W., Burkhart, B.D. & Newman, S.M. (1991) Chloroplast genome organization in Chlamydomonas. Archiv für Protistenkunde 139: 183–192.

https://doi.org/10.1016/S0003-9365(11)80017-5

Higgs, P., Jameson, D., Jow, H. & Rattray, M. (2003) The evolution of tRNA-Leu genes in animal mitochondrial genomes. Journal of Molecular Evolution 57: 435–445.

https://doi.org/10.1007/s00239-003-2494-6

Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M. & Higgs, P. (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Molecular Phylogenetics and Evolution 28: 241–252.

https://doi.org/10.1016/S1055-7903(03)00061-7

Jow, H., Hudelot, C., Rattray, M. & Higgs, P. (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Molecular Biology and Evolution 19: 1591–1601.

https://doi.org/10.1093/oxfordjournals.molbev.a004221

Korshikov, O.A. (1938) Volvocineae. In: Roll, Y.V. (Ed.) Vyznacnyk prisnovodnych vodorostej Ukrainskoj RSR. Akad. Nauk USSR, Kyiv, pp. 1–183. [in Ukrainian]

Kuhl, A. & Lorenzen, H. (1964) Handling and culturing of Chlorella. In: Prescott, D.M. (Ed.) Methods in cell physiology. Vol. 1. Academic Press, New York, London, pp. 159–187.

Marin, B., Palm, A., Klingberg, M. & Melkonian, M. (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154: 99–145.

https://doi.org/10.1078/143446103764928521

Matsuda, Y. (1988) The Chlamydomonas cell walls and their degrading enzymes. Japanese Journal of Phycology 36: 246–264.

Matsuda, Y., Musgrave, A., Van Den Ende, H. & Roberts, K. (1987) Cell walls of algae in the Volvocales: Their sensitivity to a cell wall lytic enzyme and labeling with an anti-cell wall glycopeptide of Chlamydomonas reinhardtii. Botanical Magazine Tokyo 100: 373–384.

https://doi.org/10.1007/BF02488856

Nakada, T., Shinkawa, H., Ito, T. & Tomita, M. (2010) Re-characterization of Chlamydomonas reinhardtii and its relatives with new isolates from Japan. Journal of Plant Research 123: 67–78.

https://doi.org/10.1007/s10265-009-0266-0

Nakada, T., Tsuchida, Y., Arakawa, K., Ito, T. & Tomita, M. (2014) Hybridization between Japanese and North American Chlamydomonas reinhardtii (Volvocales, Chlorophyceae). Phycological Research 62: 232–236.

https://doi.org/10.1111/pre.12061

Nakada, T., Ito, T. & Tomita, M. (2016) 18S ribosomal RNA gene phylogeny of a colonial Volvocalean lineage (Tetrabaenaceae-Goniaceae-Volvocaceae, Volvocales, Chlorophyceae) and its close relatives. Journal of Japanese Botany 91 (Suppl.): 345–354.

Nakazawa, A., Krienitz, L. & Nozaki, H. (2001) Taxonomy of the unicellular green algal genus Vitreochlamys (Volvocales), based on comparative morphology of cultured material. European Journal of Phycology 36: 113–128.

https://doi.org/10.1080/09670260110001735268

Nozaki, H. (2003) Flagellated green algae. In: Wehr, J.D. & Sheath, R.G. (Eds.) Freshwater algae of North America. Academic Press, New York, London, pp. 225–252.

https://doi.org/10.1016/B978-012741550-5/50007-6

Nozaki, H. & Kuroiwa, T. (1992) Ultrastructure of the extracellular matrix and taxonomy of Eudorina, Pleodorina and Yamagishiella gen. nov. (Volvocaceae, Chlorophyta). Phycologia 31: 529–541.

https://doi.org/10.2216/i0031-8884-31-6-529.1

Nozaki, H. & Ito, M. (1994) Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. Journal of Phycology 30: 353–365.

https://doi.org/10.1111/j.0022-3646.1994.00353.x

Nozaki, H., Ito, M., Sano, R., Uchida, H., Watanabe, M.M. & Kuroiwa, T. (1995) Phylogenetic relationship within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology 31: 970–979.

https://doi.org/10.1111/j.0022-3646.1995.00970.x

Nozaki, H., Misawa, K., Kajita, T., Kato, M., Nohara, S. & Watanabe, M.M. (2000) Origin andevolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Molecular Phylogenetics and Evolution 17: 256–268.

https://doi.org/10.1006/mpev.2000.0831

Nozaki, H., Yamada, T.K., Takahashi, F., Matsuzaki, R. & Nakada, T. (2014) New missing link genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evolutionary Biology 14: 37.

https://doi.org/10.1186/1471-2148-14-37

Page, R.D.M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358.

Pascher, A. (1927) Volvocales. In: Pascher, A. (Ed.) Süßwasser-Flora Deutschlands, Österreichs und der Schweiz. Heft 4. Gustav Fischer, Jena, pp. 1–506.

Posada, D. (2008) ModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

https://doi.org/10.1093/molbev/msn083

Pröschold, T., Marin, B., Schlösser, U.G. & Melkonian, M. (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265–300.

https://doi.org/10.1078/1434-4610-00068

Pröschold, T., Harris, E.H. & Coleman, A.W. (2005) Portrait of a species: Chlamydomonas reinhardtii. Genetics 170: 1601–1610.

https://doi.org/10.1534/genetics.105.044503

Pröschold, T. & Leliaert, F. (2007) Systematics of the green algae: Conflict of classic and modern approaches. In: Brodie, J. & Lewis, J. (Eds.) Unravelling the algae: The past, present, and future of the algae systematics. CRC Press, Taylor and Francis, Boca Raton, London, New York, pp. 123–153.

Pröschold, T. & Silva, P.C. (2007) Proposal to changes the listed type of Chlamydomonas Ehrenb., nom. cons. (Chlorophyta). Taxon 56: 595–596.

Pröschold, T. & Darienko, T. (2018) The distinctions between Chlamydomonas incerta Pascher and Chlamydomonas globosa J.W. Snow and their taxonomic consequences. Notulae Algarum 56: 1–4.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

https://doi.org/10.1093/sysbio/sys029

Schlösser, U.G. (1976) Entwicklungsstadien- und sippenspezifische Zellwandautolysine bei der Freisetzung von Fortpflanzungszellen in der Gattung Chlamydomonas. Berichte der Deutschen Botanischen Gesellschaft 89: 1–56.

Schlösser, U.G., Sachs, H. & Robinson, D.G. (1976) Isolation of protoplasts by means of a species-specific autolysine in Chlamydomonas. Protoplasma 88: 51–64.

https://doi.org/10.1007/BF01280359

Schlösser, U.G. (1981) Algal wall-degrading enzymes - autolysines. In: Tanner, W. & Loewus, F.A. (Eds.) Plant Carbohydrates II. Springer, Berlin and Heidelberg, pp. 333–351.

https://doi.org/10.1007/978-3-642-68234-6_14

Schlösser, U.G. (1984) Species-specific sporangium autolysins (cell-wall-dissolving enzymes) in the genus Chlamydomonas. In: Irvine, D.E.G. & John, D.M. (Eds.) Systematics of the green algae. Academic Press, London and Orlando, pp. 409–418.

Schlösser, U.G. (1997) Additions to the culture collections of algae since 1994. Botanica Acta 110: 424–429.

https://doi.org/10.1111/j.1438-8677.1997.tb00659.x

Shimodaira, H. & Hasegawa, M. (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.

https://doi.org/10.1093/bioinformatics/17.12.1246

Snow, J.W. (1902) The plankton algae of Lake Erie, with special reference to the Chlorophyceae. US Fish Commission Bulletin 1902: 371–394.

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

https://doi.org/10.1093/bioinformatics/btl446

Swofford, D.L. (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, MA, USA: Sinauer Associates.

Telford, M.J., Wise, M.J. & Gowri-Shankar, V. (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the bilateria. Molecular Biology and Evolution 22: 1129–1136.

https://doi.org/10.1093/molbev/msi099

Wang, W., Li, H. & Chen, Z. (2014) Analysis of plastid and nuclear DNA data in plant phylogenetics - evaluation and improvement. Science China Life Sciences 57: 280–286.

https://doi.org/10.1007/s11427-014-4620-7

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Research 31: 3406–3615.

https://doi.org/10.1093/nar/gkg595


Refbacks

  • There are currently no refbacks.


ISSN 1179-3155 (print); ISSN 1179-3163 (online)

Published by Magnolia Press, Auckland, New Zealand