Open Access Open Access  Restricted Access Subscription or Fee Access


DOI: http://dx.doi.org/10.11646/phytotaxa.372.1.4

The polyphasic approach revealed new species of Chloroidium (Trebouxiophyceae, Chlorophyta)

TATYANA DARIENKO, ALENA LUKEŠOVÁ, THOMAS PRÖSCHOLD

Abstract


Chlorella-like coccoid green algae are widely distributed in many types of habitats such as freshwater, terrestrial and marine. One group of terrestrial microalgae belonging to the Trebouxiophyceae forms the monophyletic lineage of the Watanabea clade. This clade exclusively comprises of ellipsoid and spherical coccoid green algae, which traditionally have been assigned as different species of Chlorella. Within this clade, seven out of ten genera are described mainly based on phylogenetic analyses of SSU and rbcL sequences. Most of the genera are represented by only one or two species that are rarely found in natural samples. In contrast, the genus Chloroidium is widely distributed across different habitats. We investigated 34 new isolates, which were originally assigned as Chloroidium or Chlorella, using an integrative approach. The phylogenetic analyses of SSU and ITS rDNA sequences revealed nine lineages, eight of which were highly supported in all of our bootstrap and Bayesian analyses. The ITS-2/CBC approach clearly demonstrated that these nine lineages represent individual species. The haplotype network analyses revealed that three out of them were widely distributed and showed no preference for any habitat.

                The comprehensive study of SSU and rbcL datasets also revealed that no clear synapomorphy could be found to support the assigned genus Parachloroidium. As a result of our findings, we proposed that both species belonging to Parachloroidium be transferred to Chloroidium. In addition, we re-established two species originally described by Chodat as new members of Chloroidium (C. lichenum, C. viscosum). Two of the nine lineages (C. antarcticum, C. arboriculum) were newly described in this study.


Keywords


integrative taxonomy, Chloroidium, intraspecific variation, species concept, DNA barcoding, Algae

References


Aboal, M. & Werner, O. (2011) Morphology, fine structure, life cycle and phylogenetic analysis of Phyllosiphon arisari, a siphonous parasitic green alga. European Journal of Phycology 46: 181–192.

https://doi.org/10.1080/09670262.2011.590902

Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

https://doi.org/10.1109/TAC.1974.1100705

Albertano, P., Pollio, A. & Taddei, R. (1991) Viridiella fridericiana (Chlorococcales, Chlorophyta), a new genus and species isolated from extremely acid environments. Phycologia 30: 346–354.

https://doi.org/10.2216/i0031-8884-30-4-346.1

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

https://doi.org/10.1016/S0022-2836(05)80360-2

Andreyva, V.M. (1975) Rod Chlorella. Morphologiya, sistematika, princypy klassifikatsii [The genus Chlorella. Morphology, systematics, principal classification]. Nauka, Leningrad, 86 pp. [in Russian]

Chodat, R. (1913) Monographies d‘Algues en culture pure. Matériaux pour la Flore cryptogamique Suisse 4: 1–266.

Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

https://doi.org/10.1046/j.1365-294x.2000.01020.x

Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. (2002) TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings 2: 184.

https://doi.org/10.1021/ja012036c

Coleman, A.W. (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151: 1–9.

https://doi.org/10.1078/1434-4610-00002

Coleman, A.W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19: 370–375.

https://doi.org/10.1016/S0168-9525(03)00118-5

Cote, C.A., Greer, C.L. & Peculis, B.A. (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8: 786–797.

https://doi.org/10.1017/S1355838202023063

Darienko, T., Gustavs, L., Mudimu, O., Rad Menendez, C., Schumann, R., Karsten, U., Friedl, T. & Pröschold, T. (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). European Journal of Phycology 45: 79–95.

https://doi.org/10.1080/09670260903362820

Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. (2015a) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLOS One 10: e0127838.

https://doi.org/10.1371/journal.pone.0127838

Darienko, T. & Pröschold, T. (2015b) Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). Journal of Phycology 51: 394–400.

https://doi.org/10.1111/jpy.12279

Darienko, T., Gustavs, L. & Pröschold, T. (2016) Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. Journal of Phycology 52: 1125–1145.

https://doi.org/10.1111/jpy.12481

Demchenko, E., Mikhailyuk, T., Coleman, A.W. & Pröschold, T. (2012) Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. European Journal of Phycology 47: 264–290.

https://doi.org/10.1080/09670262.2012.678388

Do, C.B., Woods, D.A. & Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22: e90–e98.

https://doi.org/10.1093/bioinformatics/btl246

Ettl, H. & Gärtner, G. (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart, Jena and Heidelberg: Gustav Fischer, 721 pp.

Ettl, H. & Gärtner, G. (2014) Syllabus der Boden-, Luft- und Flechtenalgen. Berlin and Heidelberg: Springer, 773 pp.

https://doi.org/10.1007/978-3-642-39462-1

Fott, B. & Nováková, M. (1969) A monograph of the genus Chlorella. The fresh water species. In: Fott, B. (Ed.) Studies in Phycology. Academia, Prague, pp. 10–74.

Fučíková, K., Lewis, P.O. & Lewis, L.A. (2014) Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovering of three new desert genera. Phycological Research 62: 294–305.

https://doi.org/10.1111/pre.12062

Gibson, A., Gowri-Shankar, V., Higgs, P. & Rattray, M. (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Molecular Biology and Evolution 22: 251–264.

https://doi.org/10.1093/molbev/msi012

Hallmann, C., Hoppert, M., Mudimu, O. & Friedl, T. (2016) Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: A case study using molecular approaches. Journal of Phycology 52: 732–744.

https://doi.org/10.1111/jpy.12437

Hanagata, N., Karube, I. & Chihara, M. (1997) Bark-inhabiting green algae in Japan (3) Chlorella trebouxioides and Ch. angusto-ellipsoidea, sp. nov, (Chlorelloidea, Chlorellaceae, Chlorococcales). Japanese Journal of Botany 72: 36–43.

Hanagata, N., Karube, I., Chihara, M. & Silva, P.C. (1998) Reconsideration of the taxonomy of ellipsoid species of Chlorella (Trebouxiophyceae, Chlorophyta), with establishment of Watanabea gen. nov. Phycological Research 46: 221–229.

https://doi.org/10.1111/j.1440-1835.1998.tb00117.x

Higgs, P., Jameson, D., Jow, H. & Rattray, M. (2003) The evolution of tRNA-Leu genes in animal mitochondrial genomes. Journal of Molecular Evolution 57: 435–445.

https://doi.org/10.1007/s00239-003-2494-6

Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M. & Higgs, P. (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Molecular Phylogenetics and Evolution 28: 241–252.

https://doi.org/10.1016/S1055-7903(03)00061-7

Huss, V.A.R., Frank, C., Hartmann, E.C., Hirmer, M., Klobouček, A., Seidel, B.M., Wenzeler, P. & Kessler, E. (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Journal of Phycology 35: 587–598.

https://doi.org/10.1046/j.1529-8817.1999.3530587.x

Jow, H., Hudelot, C., Rattray, M. & Higgs, P. (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Molecular Biology and Evolution 19: 1591–1601.

https://doi.org/10.1093/oxfordjournals.molbev.a004221

Krienitz, L. & Bock, C. (2012) Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698: 295–326.

https://doi.org/10.1007/s10750-012-1079-z

Leigh, J.W. & Bryant, D. (2015) POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

https://doi.org/10.1111/2041-210X.12410

Ma, S., Huss, V.A.R, Tan, D., Sun, X., Chen, J., Xie, Y. & Zhang, J. (2013) A novel species in the genu Heveochlorella (Trebouxiophyceae, Chlorophyta) witnesses the evolution from an epiphytic into an endophytic lifestyle in tree-dwelling green algae. European Journal of Phycology 48: 200–209.

https://doi.org/10.1080/09670262.2013.790996

Marin, B., Palm, A., Klingberg, M. & Melkonian, M. (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154: 99–145.

https://doi.org/10.1078/143446103764928521

Neustupa, J., Némcová, Y., Eliás, M. & Škaloud, P. (2009) Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycological Research 57: 159–169.

https://doi.org/10.1111/j.1440-1835.2009.00534.x

Neustupa, J., Némcová, Y., Veselá, J., Steinová, J. & Škaloud, P. (2013a) Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats. International Journal of Systematic and Evolutionary Microbiology 63: 377–387.

https://doi.org/10.1099/ijs.0.047944-0

Neustupa, J., Némcová, Y., Veselá, J., Steinová, J. & Škaloud, P. (2013b) Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms. Phycologia 52: 411–421.

https://doi.org/10.2216/13-142.2

Nozaki, H., Ito, M., Sano, R., Uchida, H., Watanabe, M.M. & Kuroiwa, T. (1995) Phylogenetic relationship within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology 31: 970–979.

https://doi.org/10.1111/j.0022-3646.1995.00970.x

Posada, D. (2008) ModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

https://doi.org/10.1093/molbev/msn083

Procházková, K., Némcová, Y., Kulichová, J. & Neustupa, J. (2015) Morphology and phylogeny of parasitic and free-living members of the genus Phyllosiphon (Trebouxiophyceae, Chlorophyta). Nova Hedwigia 101: 501–518.

https://doi.org/10.1127/nova_hedwigia/2015/0288

Procházková, K., Némcová, Y. & Neustupa, J. (2016) Phyllosiphon ari sp. nov. (Watanabea clade, Trebouxiophyceae), a new parasitic species isolated from leaves of Arum italicum (Araceae). Phytotaxa 283: 143–154.

https://doi.org/10.11646/phytotaxa.283.2.3

Procházková, K., Némcová, Y. & Neustupa, J. (2018) Phyllosiphon duini sp. nov. (Trebouxiophyceae, Chlorophyta), a species isolated from a corticolous phototrophic biofilm. Cryptogamie, Algologie 39: 23–34.

https://doi.org/10.7872/crya/v39.iss1.2018.23

Pröschold, T., Darienko, T., Krienitz, L. & Coleman, A.W. (2018) Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa 362: 21–38.

https://doi.org/10.11646/phytotaxa.362.1.2

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

https://doi.org/10.1093/sysbio/sys029

Schlösser, U.G. (1997) Additions to the culture collections of algae since 1994. Botanica Acta 110: 424–429.

https://doi.org/10.1111/j.1438-8677.1997.tb00659.x

Song, H., Zhang, Q., Liu, G. & Hu, Z. (2015) Polulichloris henanensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phytotaxa 218: 137–146.

https://doi.org/10.11646/phytotaxa.218.2.3

Song, H., Hu, Y., Zhu, H., Wang, Q., Liu, G. & Hu, Z. (2016) Three novel species of coccoid green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta). International Journal of Systematic and Evolutionary Microbiology 66: 5465–5477.

https://doi.org/10.1099/ijsem.0.001542

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

https://doi.org/10.1093/bioinformatics/btl446

Swofford, D.L. (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, MA, USA: Sinauer Associates.

Telford, M.J., Wise, M.J. & Gowri-Shankar, V. (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the bilateria. Molecular Biology and Evolution 22: 1129–1136.

https://doi.org/10.1093/molbev/msi099

Tschermak-Woess, E. (1988) New and known taxa of Chlorella (Chlorophyceae): occurrence as lichen photobionts and observations on living dictyosomes. Plant Systematics and Evolution 159: 123–139.

https://doi.org/10.1007/BF00937430

Xia, X. (2018) DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution 35: 1550–1552.

https://doi.org/10.1093/molbev/msy073

Xia, X., Xie, Z., Salemi, M., Chen, L. &Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7.

https://doi.org/10.1016/S1055-7903(02)00326-3

Xia, X. & Lemey, P. (2009) Assessing substitution saturation with DAMBE. In: Lemey, P., Salemi, M. & Vandamme, A.-M. (Eds.) The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. 2nd edition. Cambridge University Press, pp. 615–630.

https://doi.org/10.1017/CBO9780511819049.022

Yang, Z., Nielsen, R. & Hasegawa, M. (1998) Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution 15: 1600–1611.

https://doi.org/10.1093/oxfordjournals.molbev.a025888

Zhang, J., Huss, V.A.R., Sun, X., Chang, K. & Pang, D. (2008) Morphology and phylogenetic position of a trebouxiophycean green alga (Chlorophyta) growing on the rubber tree, Hevea brasiliensis, with the description of a genus and species. European Journal of Phycology 43: 185–193.

https://doi.org/10.1080/09670260701718462

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Research 31: 3406–3615.

https://doi.org/10.1093/nar/gkg595


Refbacks

  • There are currently no refbacks.


ISSN 1179-3155 (print); ISSN 1179-3163 (online)

Published by Magnolia Press, Auckland, New Zealand