A new species of the genus *Ocadia* (Testudines: Geoemydidae) from the middle Miocene of Tanegashima Island, southwestern Japan and its paleogeographic implications

AKIO TAKAHASHI1,5, KIMIHIKO ŌKI2, TAKAHIRO ISHIDO3 & REN HIRAYAMA4

1Department of Zoology, Faculty of Science, Okayama University of Science. Ridai–cho 1–1, Kita–ku, Okayama 700–0005, Japan
E-mail: takahashi@zool.ous.ac.jp
2Kagoshima University Museum. Korimoto 1–21–30, Kagoshima 890–0065, Japan
3Minamitane–cho Board of Education. Nakanokami 2793–1, Minamitane–cho, Kagoshima 891–3792, Japan
4School of International Liberal Studies, Waseda University. Nishiwaseda 1–6–1, Shinjyuku-ku, Tokyo 169–8050, Japan
E-mail: renhrym@ab.mbn.or.jp
5Corresponding author

Abstract

A new geoemydid turtle, *Ocadia tanegashimensis* (Testudines: Geoemydidae) is described on the basis of a relatively well–preserved shell from the lower middle Miocene of Tanegashima Island, Kagoshima Prefecture, southwestern Japan. This species is clearly distinguished from two congeneric species (extant *O. sinensis* and *O. nipponica* from the middle Pleistocene of eastern Japan) due to the presence of the following character states: length of the entoplastron as long as the interhyoplastral suture, the costals dovetailed with one another in outline, the third pleural overlapping only the sixth and seventh peripherals. The present study suggests that the initial intrageneric diversification of *Ocadia* began not later than the early Miocene in eastern Asia.

Key words: Reptilia, *Ocadia tanegashimensis* sp. nov., Miocene, Kawachi Formation, Kukinaga Group, paleogeography

Introduction

The genus *Ocadia* (Testudines: Geoemydidae) consists of the extant *O. sinensis* from northern Vietnam, southern China, and Taiwan (Iverson 1992) and *O. nipponica*, an extinct species from the middle Pleistocene of eastern Japan (Hirayama et al. 2007). In recent molecular phylogenetic studies, this genus has been frequently synonymized with *Mauremys* along with *Chinemys* (e.g., Fritz and Havaš 2007; Turtle Taxonomy Working Group 2007; Lovich et al. 2011) because *O. sinensis*, *M. japonica* and *Chinemys* spp. form a monophyletic clade and are included in a major, more inclusive clade with the other species of the genus *Mauremys* sensu stricto (Honda et al. 2002; Barth et al. 2004; Feldman and Parham 2004; Spinks et al. 2004; Sasaki et al. 2006; Jiang et al. 2011). However, to date, no diagnostic morphological features or synapomorphies are known for the clade embracing *O. sinensis*, *M. japonica*, and *Chinemys* spp. or the more inclusive clade including also all other species of *Mauremys* sensu stricto. To overcome this incongruence between phylogenetic relationships and taxonomic classification, two solutions have been proposed: placing all species into *Mauremys* or to recognize several distinct genera (Barth et al. 2004; Spinks et al. 2004). The oldest available name for the clade including *O. sinensis*, *M. japonica*, and *Chinemys* spp. is *Ocadia* (Barth et al. 2004). In the present study, *Ocadia* sensu stricto is tentatively retained, however.

From a paleontological perspective, lumping *Ocadia* with *Mauremys* and *Chinemys*, as suggested by Spinks et al. (2004), appears to eliminate the remarkable morphological differences between the three genera, as well as the long diversification history of the genus *Ocadia*. *Ocadia* is clearly distinct from the latter two genera in having several morphological traits, such as enlarged upper and lower triturating surfaces along with two lingual ridges,
small foramen palatinum posterius, moderately developed plastral buttresses, and shortened gular scutes (Hirayama et al. 2007). Fossils referred to the genus *Ocadia* had been abundantly recorded from the Paleogene to the Quaternary of East Asia and Europe, but those from Europe (Lydekker 1889; Kuhn 1964) were recently re-examined and transferred to other genera such as *Palaeochelys*, *Palaeoemys*, and *Cuvierichelys* (de Broin 1977; Claude and Tong 2004; Herret 2004). The East Asian fossils are represented by *O. sinensis* recorded from the Pliocene of China (Yeh 1963, 1994; Li et al. 2008) and Kyushu, Japan (Hirayama 2001), *O. nipponica*, and *Ocadia* sp. from the lower Miocene of Kyushu (Nagasaki Prefecture; Hirayama et al. 2012), the upper lower to lower middle Miocene of Honshu, Japan (Okayama and Fukushima Prefectures; Hirayama et al. 1982, 1983; Hasegawa et al. 2002), and the Pleistocene of Honshu (Hyogo and Kanagawa Prefectures; Hirayama 2006; Hasegawa et al. 2008). Most of these fossils need additional materials and further investigations, although it has been suggested that this genus had diversified and was widely distributed in eastern Asia during the Miocene (Hirayama et al. 2007).

We recently discovered a relatively well-preserved shell fossil belonging to the genus *Ocadia* from a Miocene shallow marine to brackish deposit on the southern part of Tanegashima Island, the Osumi Island Group, located south of Kyushu, Japan (Fig. 1A). This specimen is the oldest vertebrate fossil recorded from this island and is obviously different from the two known congeneric species (*O. sinensis* and *O. nipponica*). In this study, we describe the present fossil as a new species, and discuss its paleogeographic implications.

Material and methods

Tanegashima Island mainly consists of Paleogene basement rocks (Eocene to Oligocene Kumage Group), Miocene Kukinaga Group, Pleistocene marine and non-marine deposits (the Masuda, Hase, and Takenokawa Formations), and Holocene deposits (Hayasaka 1969; Kizaki 1985; Inoue 1992). Of these, the Kukinaga Group is composed of the Tashiro, Kawachi, and Osaki Formations in ascending order with conformity and their distributions are restricted to the southern part of the island (Fig. 1A and 1B). The present turtle fossil was collected from an outcrop of mudstone layers of the Kawachi Formation exposed by road construction along with a fragment of trionychid turtle shell and some molluscs (*Crassostrea* and *Vicarya*) in Kawachi, Minamitane-cho (the southern part of Tanegashima Island), Kagoshima Prefecture, Japan, in July 2003 (Fig. 1B and 2). The presence of marine invertebrate fossils such as bivalves and gastropods mentioned above, as well as pollen of mangrove plants indicate that this formation was formed in a tropical shallow marine coastal environment (Inoue 1992; Kojima and Otsuka 1995). The formation has never been dated, but Inoue (1992) estimated that it was formed in approximately 16 Ma on the basis of the molluscan fossils. Inoue (1992) also examined planktonic foraminifera from the Hirota Mudstone and Sandstone Member (the second member from the top of the Osaki Formation) and correlated it with N13 to N15 (late middle to early late Miocene) of Blow (1969). Further, Ogasawara (1997) dated quartz–porphyry in the Tashiro Formation (underlying the Kawachi Formation) approximately to 15.6 Ma by using K–Ar dating and Yamaguchi et al. (2012) re-correlated the planktonic foraminiferal assemblage from the Osaki Formation in Inoue (1992) with M6 to PL2 (middle Miocene to early Pliocene) of Wade et al. (2011). In this study, we follow these previous works and consider the age of the Kawachi Formation as the early middle Miocene.

Morphological comparisons with the present specimen were made using skeletal adult specimens in the private collections of AT and of RH and also with the type specimen of *Ocadia nipponica* Hirayama et al. 2007 (CBM–PV686) preserved in vertebrate fossil collection of Natural History Museum & Institute, Chiba (CBM). Poorly defined or poorly preserved species were excluded from comparisons (e.g., *Clemmys schansiensis* and *Ocadia? perplexa*). Classification of the genus *Ocadia* followed Hirayama et al. (2007). Shell terminology followed Zangerl (1969). Measurements were taken to the nearest 0.1 mm using a digital slide caliper.
FIGURE 1. Location of Tanegashima Island, southwestern Japan (A) and locality of the present turtle fossil (MTE1, B) with adjacent geological map. 1, Osaki Formation; 2, Kawachi Formation; 3, Tashiro Formation; 4, Kumage Group; 5, fault; 6, fossil locality. The geological map used was a modified version of the map presented by Inoue (1992).

Systematics

Testudines Batsch, 1788
Cryptodira Cope, 1868
Testudinoidea Batsch, 1788
Geoemydidae Theobald, 1868

Ocadia Gray, 1870

Type species. Ocadia sinensis (Gray, 1834).

Included species. Ocadia sinensis (Gray, 1834); O. nipponica Hirayama et al., 2007.

Revised diagnosis. Modified on the basis of Smith (1931), Bourret (1941), Ernst and Barbour (1989), Hirayama et al. (2007), and this study: medium to large–sized hingeless geoemydids with following combination of character states: hexagonal neural plates short–sided in front; posterior margin of the carapace unserrated; second and third vertebral scutes frequently showing nearly rectangular in shape, as long as wide; the entoplastron intersected by the humero–pectoral sulcus; the plastral buttresses moderately developed, extending to half way of the costal plates; median length of the gular shorter than the interhumeral sulcus and the gular often isolated from the entoplastron; enlarged upper and lower triturating surface decorated by the lingual ridges; the upper triturating surface with a denticulate median ridge; and the foramen palatinum posterius small.

Remarks. Recent molecular phylogenetic analyses have shown that the genus Ocadia is included in a clade with Chinemys spp. and Mauremys japonica and that these taxa form another more inclusive clade with the remaining living species of Mauremys (Mauremys sensu lato, Honda et al. 2002; Barth et al. 2004; Feldman and Parham 2004; Spinks et al. 2004; Sasaki et al. 2006; Jiang et al. 2011). However, no synapomorphic morphological
character states are known for the two clades (e.g., Honda et al. 2002; Hirayama et al. 2007). Actually, because Ocadia differs much from Chinemys and Mauremys in several skull and shell characters (e.g., McDowell 1964; Hirayama 1985; Gaffney and Meylan 1988; Yasukawa et al. 2001), we retain the genus Ocadia for disclosing its past species diversity from paleontological view in the present study.

Ocadia tanegashimensis sp. nov.
(Suggested Japanese name: Tanegashima hanagame)
(Figs. 2–4; Table 1)

Holotype. A shell, deposited in the collection of the Minamitane–cho Board of Education (MTE1).

Type locality. South slope located approximately 1.5 km southwest from the Kaminaka crossroad on Prefectural Road 588, Kawachi, Minamitane–cho, Kagoshima Prefecture, Japan.

Horizon. Middle part of Kawachi Formation (early middle Miocene), Kukinaga Group.

Etymology. The specific epithet refers to the name of the island (Tanegashima Island) from which the fossil was discovered.

Diagnosis. A medium–sized geoemydid species larger than *O. sinensis*, characterized by a combination of the following character states: the first vertebral expanded anterolaterally, reaching the second marginal; the second and third vertebral scutes much narrower than the first vertebral anteroposteriorly; a medial and two lateral obtuse discontinuous keels on carapace; length of the entoplastron as long as the interhyoplastral suture; the costals dovetailed with one another in outline; the third pleural overlapping only the sixth and seventh peripherals.

Description. Shell.
The shell is incompletely preserved and strongly depressed dorsoventrally. It lacks the eighth neural; the first and second suprapygalys; the right fifth, eighth and eleventh peripherals; the left sixth and eleventh peripherals; and the pygal. The shell margin is not emarginated anterolaterally and posterolaterally. The shell surface is smooth, lacks growth annuli, and has an obtuse medial and two lateral discontinuous knob–like longitudinal keels. The carapace and plastron are moderately thick (carapace: 10.3 mm thick in the middle of the thickened part of the nuchal, 9.4 mm in the posterior part of the fifth neural, and 8.5 mm in the second peripheral; plastron: 11.5 mm thick in the left lateral part of the gular lip, 8.0 mm in the posterior corner of the entoplastron, 4.9 mm in the posterolateral corner of the right hyoplastron, and 12.8 mm in the posteriormost part of the left femoral lip).

The nuchal is hexagonal and slightly short–sided posteriorly. The first neural is barrel–shaped and the second to seventh neurals are hexagonal and short–sided anteriorly. Widths of the costals are variable; the second, fourth, sixth, and eighth costals are distally expanded, whereas the third and fifth costals are distally contracted. The first costal contacts the first to third peripherals and the second costal connects the third and fourth peripherals laterally. The remaining costals articulate with the adjacent two peripherals distally.

The cervical scute is rectangular and longer than wide in dorsal view and trapezoidal and much wider than long in ventral view. The first vertebral is slightly longer than wide (83.7 mm long and 81.2 mm wide) and laterally notched, reaching the posteromedial corner of the second marginal. The second and third vertebras are nearly rectangular in shape and narrower than the first vertebral (the second, 67.4 mm long and 67.6 mm wide; the third, 70.3 mm long and 73.2 mm wide). The fourth is obviously wider than the second and third vertebras. The first pleural contacts the posterolateral corner of the first marginal anteromedially and the second to fifth marginals anterolaterally. The second pleural appears to contact the fifth and sixth marginals laterally, and the third pleural contacts the sixth to eighth marginals. The fourth pleural contacts the eighth to tenth marginals. Of the four pleural scutes, the first covers four and the second and fourth cover three marginals, whereas the third covers only two peripherals (the sixth and seventh).

Plastron. The plastron preserves all components: the epiplastra, the entoplastron, the hyoplastra, the hypoplastra and the xiphiplastra. The maximum plastron length is estimated to be approximately 325 mm. The presence of a shallow but distinct ventral concavity on the plastron in ventral view and the absence of the laterally rounded posterior lobe suggest that this individual is male (Ernst and Barbour 1989; Zhang et al. 1998).

The epiplastra are mostly preserved, lacking only the lateral margin of the left epiplastron. Of these, the right is 56.7 mm long and 57.2 mm wide. They have a relatively wide epiplastral lip represented by dorsal overlapping of the gular scute (15.7 mm in the right) and lack the epiplastral excavaion. The interepiplastral suture is short (24.3
mm) and approximately two-fifths of the median length of the entoplastron (57.4 mm) in ventral view. It is also short (25.3 mm) dorsally and approximately half of the median length of the entoplastron (43.7 mm). The hyoplastra lack most of the axillary buttresses, the anterolateral fringes corresponding to a portion of the bridge to the carapace, and the posterolateral part of the left forelobe. The left hyoplastron (109.6 mm long and 108.7 mm wide) preserves the upper part of the axillary buttress, suturing with the middle parts of the left first costal in ventral view. The interhyoplastral suture is 62.6 mm, slightly longer than the median length of the entoplastron in ventral view. The hypoplastra are also preserved but their anterolateral and anteromedial corners and the ascending processes of the inguinal buttresses are missing. However, the left fifth costal preserves the sutural facet in ventral view, indicating that the inguinal buttresses extend to the middle part of the fifth costals. The xiphiplastra are nearly completely preserved, missing just small portions in their anteromedial parts and the posteromedial part of the left xiphiplastron. The left xiphiplastron is 77.9 mm long and 68.63 mm wide. Length of the interhypoplstral suture is 58.1 mm.

FIGURE 2. Picture showing occurrence of *Ocadia tanegashimensis* (MTE1) from the Kawachi Formation in Kawachi, Minamitane-cho, southern part of Tanegashima Island.

The gular scutes reach the anterior tip of the entoplastron. Length of the intergular sulcus (35.6 mm) is slightly shorter than that of the interhumeral sulcus (36.2 mm). The humero-pectoral sulcus intersects the posterior part of the entoplastron. It slightly bends backward on the hyoplastra. The pectoro-abdominal sulcus arches over the lateral part of the hyoplastra. The axillary and right inguinal scutes are invisible, although the left inguinal is present and is isolated from the femoral scute as in *O. sinensis*.

Comparisons. The musk duct foramen in the right third peripheral of the present material (MTE1) indicates that this taxon belongs to the family Geoemydidae (Hirayama 1985; Joyce and Bell 2004). MTE1 is similar to *Chinemys, Cuvierichelys, Mauremys, Ocadia, Palaeochelys, Sacalia*, and *Siebenrockiella* in lacking the plastral hinge and in having the entoplastron intersected by the humero-pectoral sulcus and the neurals short-sided anteriorly. In addition, MTE1 has four informative character states for genus level taxonomy (Table 1): (1) second and third vertebrals nearly rectangular, as long as wide (modified from Hirayama *et al.* 2007), (2) absence of serration on the posterior margin of the carapace (e.g., Ernst and Barbour 1989; Yasukawa *et al.* 2001), (3) medial length of the gular shorter than the interhumeral sulcus (Hirayama *et al.* 2007), and (4) the plastral buttresses moderately developed, extending to half way of the costals (Hirayama *et al.* 2007). Of these, the character (3) and (4) are known as diagnostic characters for the genus *Ocadia* (Hirayama *et al.* 2007), but variably seen in several
comparative taxa (Table 1). Character (1) is shared exclusively with *O. nipponica*, some *O. sinensis*, and some *Palaeochelys* (*P. crocheti* and *P. laurenti*). A similar state is seen in *M. gaudryi*, some *M. japonica*, *M. massiliensis*, and *M. sarmatica*, in which the second and third vertebrales are much wider than long (de Broin 1977; Hervet 2004; Takahashi per. obs. on *M. japonica*). Character state (2) is informative for discriminating *Ocadia* from several species of *Mauremys* as well as a few *Palaeochelys* (*P. laurenti*), and *Siebenrockiella* (Sacco 1889; Ernst and Barbour 1989; Hervet 2004; Claude et al. 2007; Chesi et al. 2009). Among the comparative genera, all of these four character states seen in MTE1 are exclusively shared with the genus *Ocadia* (Table 1). The other character states (5–10) are not informative for genus level identification. Thus, in the following, we compare MTE1 within *Ocadia*.

TABLE 1. Comparisons of the Tanegashima geoemydid (MTE1) with hingeless geoemydids (see Appendix) having the entoplastron intersected by the humero–pectoral sulcus and the neurals short–sided anteriorly. Symbols, +, –, and ?, indicate presence, absence, and undetermined status of a given character state. Character state (1): second and third vertebrals rectangular and as long as wide, character state (2): posterior margin of the carapace unserrated, character state (3): medial length of the gular shorter than interhumeral sulcus, character state (4): plastral buttresses developed, extending halfway of the costals, character state (5): medial and two lateral obtuse discontinuous keels on the carapace present, character state (6): first vertebral scute expanded anterolaterally, reaching the second marginal, character state (7): second and third vertebral scutes much narrower than the first anteroposteriorly, character state (8): length of entoplastron nearly as long as interhyoplastral suture, character state (9): costals dovetailed with one another in outline, and character state (10): third pleural overlapping only sixth and seventh peripherals.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Character state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MTE1</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chinemys</td>
<td>Ch. fenhoense</td>
<td>–</td>
</tr>
<tr>
<td>Chinemys</td>
<td>Ch. nigricans</td>
<td>–</td>
</tr>
<tr>
<td>Chinemys</td>
<td>Ch. reevesii</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. annamensis</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. campanii</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. gaudryi</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. japonica</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. leprosa</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. massiliensis</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. mutica</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. portisi</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. pygolopha</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. rivulata</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. sarmatica</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. thanhinensis</td>
<td>–</td>
</tr>
<tr>
<td>Mauremys</td>
<td>M. yabei</td>
<td>–</td>
</tr>
<tr>
<td>Ocadia</td>
<td>O. nipponica</td>
<td>+</td>
</tr>
<tr>
<td>Ocadia</td>
<td>O. sinensis</td>
<td>+/-</td>
</tr>
<tr>
<td>Palaeochelys</td>
<td>P. crocheti</td>
<td>+</td>
</tr>
<tr>
<td>Palaeochelys</td>
<td>P. laurenti</td>
<td>+</td>
</tr>
<tr>
<td>Palaeochelys</td>
<td>P. vallisnerii</td>
<td>–</td>
</tr>
<tr>
<td>Sacalia</td>
<td>Sacalia spp.</td>
<td>–</td>
</tr>
<tr>
<td>Siebenrockiella</td>
<td>S. crassicollis</td>
<td>–</td>
</tr>
<tr>
<td>Siebenrockiella</td>
<td>S. leytensis</td>
<td>–</td>
</tr>
</tbody>
</table>
Within the genus *Ocadia*, MTE1 exclusively shares the first vertebral expanded anterolaterally and reaching to the second marginal (character 6) with *O. nipponica* (Hirayama et al. 2007). On the other hand, it shares the tricarinate discontinuous knob–like keels (character state 5) only with *O. sinensis* (Table 1, Smith 1931; Ernst and Barbour 1989; Hirayama et al. 2007). Ernst and Barbour (1989) also described that the dorsal keels on the carapace disappear in aged individuals of *O. sinensis*. This suggests that absence of the keels in *O. nipponica* could be attributed to loss resulting from aging. Moreover, the second and third vertebrals in MTE1 are much narrower than the first (character state 7), which is one of the diagnostic characters for *O. nipponica* (Hirayama et al. 2007).
Furthermore, MTE1 has three peculiar character states: length of the entoplastron nearly as long as the interhyoplastral suture (character 8), the second to sixth costal bones showing dovetailed shapes (character 9), and the third pleural overlapping only the sixth and seventh peripherals (character 10). Character 8 is also shared with several species of *Mauremys* (*M. campanii*, *M. mutica*, *M. pygolopha*, *M. sarmatica*, *M. thanhinensis*, *M. yabei*, and *P. crocetti*; Shikama 1949; de Broin 1977; Hervet 2004; Claude et al. 2007; Takahashi pers. obs. on *M. mutica*). In MTE1, the even-numbered costal plates are expanded whereas the odd-numbered plates exclusive of the first one are narrower distally (character 9). In contrast, the costals in the other comparative taxa are nearly rectangular. The third pleural covers only two peripherals, the seventh and eighth (character 10) in MTE1, but overlaps three peripherals in the two congeneric species as well as the other comparative species (the sixth to eighth, generally, but very rarely the fifth to seventh in *O. sinensis*). Based on these features, MTE1 is clearly distinguished from *O. sinensis* and *O. nipponica*.

Discussion

The present results reveal that the genus *Ocadia* consists of the extant *O. sinensis*, *O. nipponica* from the middle Pleistocene of eastern Japan, and *O. tanegashimensis* from the lower middle Miocene of Tanegashima Island, southwestern Japan at present. *Ocadia? perplexa* from the Pliocene of Mongolia (Gilmore 1931) needs verification of its generic status because it is represented only by three partial shell fragments lacking diagnostic features for the genus. Fossils referred to the genus have also been recorded from the upper lower Miocene (ca. 18 Ma ago: Komatsubara et al. 2005) of Nagasaki Prefecture (Hirayama et al. 2012, Fig. 5A), the uppermost lower to lower middle Miocene of Fukushima (Blow’s [1969] N.8–N.9 zones, Hasegawa et al. 2002; see Sudo et al. 2005 for its
biostratigraphic correlation) and Okayama (Blow’s [1969] N.8 zone: Hirayama et al. 1982, 1983; see Taguchi et al. 1979 and Nomura 1992 for its biostratigraphic correlation and Takemura et al. 2003 for its radiometric age) Prefectures (Fig. 5B), and the Pleistocene of Hyogo (Hirayama 2006) and Kanagawa Prefectures (Hasegawa et al. 2007), Japan. Of these, the specimen from Fukushima has been considered to be conspecific with those from Okayama by Hasegawa et al. (2002), because they share the following character states: absence of longitudinal keels, no growth annuli on the carapace, and a larger carapace than *O. sinensis*. In addition, the fossil from Nagasaki is similar to those from Fukushima and Okayama in sharing these three morphological features (Hirayama unpublished data). However, *O. tanegashimensis* clearly differs from these late early to early middle Miocene fossils in having three discontinuous keels on the carapace and the dovetailed costals with one another in outline. Thus, the occurrences of *O. tanegashimensis* and relevant congeners from the upper lower to lower middle Miocene of Japan suggest that at least two species of *Ocadia* were distributed in the area around Tanegashima Island and from Fukushima to Nagasaki around late early Miocene (Fig. 5A).

FIGURE 5. Occurrences of *Ocadia* fossils in late early (A) and early middle (B) Miocene of Japan. Paleogeographic maps of mainland Japan and adjacent regions in these ages follows Ogasawara (1994) with slight modification on the basis of Yamamoto et al. (2000). Filled circle: localities of the latest early to early middle Miocene specimens from Okayama and Fukushima Prefectures, open circle: locality of the latest early Miocene specimens from Nagasaki Prefecture, filled square: locality of *O. tanegashimensis*, open square: putative occurrence of ancestral stock of *O. tanegashimensis*. Gray areas denote land.

According to generally prevailing Miocene paleogeographic hypotheses (Iijima and Tada 1990; Ogasawara 1994), Japan had mostly been a part of the eastern margin of the Eurasian continent until the late early Miocene and subsequently divided into several islands by tectonic subsidence caused by the opening of the Japan Sea (counter-clockwise rotation of northeastern Japan from approximately 25 to 14 Ma and clockwise rotation in southwestern Japan from approximately 16 to 15 Ma; Otofuji et al. 1985; Baba et al. 2007) in the late early to early middle Miocene (Fig. 5). Occurrences of two distinct lineages of the genus *Ocadia* from the lower middle Miocene of Tanegashima and from the upper lower to lower middle Miocene of Fukushima, Nagasaki, and Okayama suggest that each was differentiated from different ancestors not on the proto-Japanese Islands but on the eastern margin of the Eurasian continent in the late early Miocene. It is interesting that this view is concordant with the recent molecular clock estimation which states that the separation of *Ocadia* from its close relatives (i.e., an ancestral
lineage shared with *Ocadia*, *Chinemys*, and *M. japonica*) occurred in 18–23 Ma ago (the early Miocene; Barth *et al.* 2004). In contrast, the geographic patterns of the early to middle Miocene *Ocadia* from Japan challenge the paleogeographic hypothesis deduced from the Early to Middle Miocene *Stegolophodon* (*S. pseudolatidens*) from Japan (Saegusa 2008). In terms of the latter inference, further discoveries of Miocene *Stegolophodon* are strongly desired for verification due to the paucity of specimens from southwestern Japan.

Although *O. tanegashimensis* was discovered from shallow marine sediment (the Kawachi Formation), this species appears to have had a freshwater habitat because *O. sinensis* occurs in subtropical rivers, ponds, and lakes in lowland areas of Taiwan, southern China, and northern Vietnam (Iverson 1992; Ernst and Barbour 1989). *Ocadia nipponica* has also been discovered from fluvial deposit, and is considered to be a freshwater species. Co-occurrence of *O. tanegashimensis* and a shell fragment of a trionychid turtle supports this ecological inference. In contrast, Hirayama *et al.* (1982, 1983) presumed that the late early to early middle Miocene *Ocadia* from shallow marine sediments in Okayama occurred in habitats like the extant estuarine *Batagur* species (*Batagur* sensu lato, see Praschag *et al.* 2007, 2009). This presumption appears to be very unlikely because it was deduced from the hypothesis that the genus *Ocadia* is allied to the “*Batagur* complex” (McDowell 1964) consisting of *Batagur baska* sensu lato, *B. borneensis*, *Chinemys*, *Heosemys annandali*, *Malayemys*, and *Ocadia*. However, recent molecular phylogetic analyses showed that the “*Batagur* complex” is not monophyletic (e.g., Barth *et al.* 2004; Spinks *et al.* 2004; Sasaki *et al.* 2006). This suggests that *O. tanegashimensis* from the Kawachi Formation may have been transported from a nearby lowland area via a river.

Acknowledgements

We would like to express our gratitude to M. Delfino (Università di Torino), U. Fritz (Museum of Zoology, Senckenberg Dresden) and an anonymous reviewer for the critical reading and valuable comments on earlier versions of our manuscript. We also would like to thank H. Ota (University of Hyogo) and Y. Yasukawa (University of the Ryukyus) for their helpful comments and constructive criticism. Y. Yasukawa also permitted us to examine his private turtle skeleton collection. We also thank S. Kawano (Shimane Nature Museum of Mt. Sanbe) and T. Kato (Kurashiki University of Science and the Arts) for useful discussions about Miocene turtle fossils and Miocene stratigraphy in Japan. K. Inoue (Nagoya University) provided useful suggestions and informative literature on Miocene paleogeographic hypotheses of Japan. We are also much indebted to Y. Kowaki (Minamitane Board of Education, Kagoshima) for helping us with field surveys. S. Isaji (Natural History Museum and Institute, Chiba) permitted us to examine the holotype of *O. nipponica*. T. Nakamura and Y. Yoshioka (Okinawa Zoo), R. Atsumi (Izu Andy Land), and R. Fujii (Higashino High School, Saitama) provided us comparative specimens of *O. sinensis*.

References

http://dx.doi.org/10.1111/j.1365-246x.2007.03513.x

http://dx.doi.org/10.1111/j.0300-3256.2004.00150.x

Specimens examined and sources of morphological data used for detailed comparisons in Table 1. Abbreviations: AT, private turtle collection of Akio Takahashi; RH, private turtle collection of Ren Hirayama.

Chinemys fenhoense: Chow (1961). *Chinemys nigricans*: RH 855, RH b–11; Fang (1934); Wermuth and Mertens (1961); Ernst and Barbour (1989); Iverson and McCord (1989); Lovich and Ernst (1989). *Chinemys reevesii*: AT 4, 137, 145, 150–151, 272, 274, 276, 297, 299; Stejneger (1907); Wermuth and Mertens (1961); Ernst and Barbour (1989); Lovich and Ernst (1989).

Cuvierichelys parisiensis: de Broin (1977); Hervet (2004); Hirayama, personal observation. *Mauremys annamensis*: AT 121, 136; Bourret (1941); Wermuth and Mertens (1961); Ernst and Barbour (1989); Yasukawa *et al.* (2001).

Mauremys leprosa: RH 453–454, 929; Boulenger (1889); Loveridge and Williams (1957); Wermuth and Mertens (1961); Hirayama (1985); Ernst and Barbour (1989); Lovich and Ernst (1989); and Yasukawa *et al.* (2001).

Siebenrockiella leyensis: personal specimen of Y. Yasukawa; Taylor (1920); Ernst and Barbour (1989); Diesmos *et al.* (2005).