A key to the Mymaridae (Hymenoptera) egg parasitoids of proconiine sharpshooters (Hemiptera: Cicadellidae) in the Nearctic region, with description of two new species of *Gonatocerus*

SERGUEI V. TRIAPITSYN

Entomology Research Museum, Department of Entomology, University of California, Riverside, CA, 92521, USA. E-mail: serguei.triapitsyn@ucr.edu.

Table of contents

Abstract ... 2
Introduction ... 2
Material and methods .. 3
Key to genera and species of Mymaridae, egg parasitoids of Proconiini (Cicadellidae) in the Nearctic region 4

Acmopolynema sema Schauff, 1981 ... 6
Anagrus epos Girault, 1911 ... 7
Anagrus stethynioides S. Triapitsyn, 2002 .. 9
Gonatocerus morgani S. Triapitsyn, *sp. n.* .. 9
Gonatocerus morrilli (Howard, 1908) ... 12
Gonatocerus walkerjonesi S. Triapitsyn, *sp. n.* .. 15
Gonatocerus atriclavus Girault, 1917 ... 18
Gonatocerus fasciatus Girault, 1911 ... 20
Gonatocerus triguttatus Girault, 1916 ... 22
Gonatocerus ashmeadi Girault, 1915 ... 24
Gonatocerus uat S. Triapitsyn, 2006 ... 27
Gonatocerus novifasciatus Girault, 1911 ... 28
Gonatocerus incomptus Huber, 1988 ... 30
Gonatocerus impar Huber, 1988 ... 31
Gonatocerus sp(p). near *incomptus* Huber, 1988/impar Huber, 1988 complex ... 32
Acknowledgments ... 33
References ... 34
Abstract

An illustrated identification key to the three genera and 14 named species of Mymaridae (Hymenoptera) egg parasitoids of the proconiine sharpshooters (Hemiptera: Cicadellidae: Cicadellinae: Proconiini) in the Nearctic region, is provided. Two new species, Gonatocerus morgani and G. walkerjonesi, are described from California, USA. A synopsis of the included species is given, with emphasis on their distributional records and known host associations.

Key words: Mymaridae, Acmopolynema sema, Anagrus epos, Gonatocerus spp., parasitoid, Cicadellidae, Proconiini

Introduction

Proconiine sharpshooters (Hemiptera: Cicadellidae: Cicadellinae: Proconiini) are represented by the following four genera in the Nearctic region (north of Mexico): Cuerna Melichar, Homalodisca Stål, Oncometopia Stål, and Paraulacizes Young. In addition, Phera Stål may marginally extend into this region from its mostly Neotropical range. The most notorious of them is the glassy-winged sharpshooter, Homalodisca coagulata (Say), which is a vector of plant diseases caused by the phytopathogenic bacterium Xylella fastidiosa (Blua et al. 1999). Glassy-winged sharpshooter is a self-introduced pest in California from southeastern USA (Blua et al. 1999). Turner and Pollard (1959) provided a brief overview of proconiine sharpshooter egg parasitoids (Mymaridae and Trichogrammatidae) in Georgia. Triapitsyn (2003) reviewed the trichogrammatid egg parasitoids of proconiine sharpshooters in southeastern USA. Here, the mymarid egg parasitoids of Proconiini are reviewed for the entire Nearctic region.

The establishment of H. coagulata in California in the 1990s, later in Hawaii and French Polynesia, and even more recently in Easter Island (Chile) (Pilkington et al. 2005) prompted interest in proconiine sharpshooter investigations, including studies of their egg parasitoids in North America (Triapitsyn and Phillips 1996, 2000; Triapitsyn et al. 1998; Phillips et al. 2001; Triapitsyn, Bezark and Morgan 2002; Triapitsyn, Hoddle and Morgan 2002), mainly for classical biological control purposes (Morgan et al. 2000; Jones 2001; Triapitsyn and Hoddle 2001, 2002; Morgan et al. 2002; Pilkington et al. 2004, 2005). Most of the reported mymarid egg parasitoids of Homalodisca and Oncometopia are members of Gonatocerus Nees (Turner and Pollard 1959; Triapitsyn et al. 1998, Triapitsyn and Phillips 2000; Triapitsyn, Bezark and Morgan 2002), particularly its ater species group (Triapitsyn 2002a, 2002b). All the North American Gonatocerus species that parasitize eggs of Proconiini are solitary parasitoids, with an exception of G. fasciatus Girault, which is a gregarious parasitoid (Triapitsyn et al. 2003). Parasitoids of Cuerna, the most speciose genus of Proconiini in the Nearctic region, are less known except for those of C. costalis (Fabricius) (Triapitsyn and Rakitov 2005). Tipping et al. (2006) recorded the first mymarid parasitoid of Paraulacizes irrорata (Fabricius) eggs in Florida.
Egg parasitoids of *Phera* are still unknown.

The large and increasing number of mymarids reared from eggs of Proconiini requires an updated key for use by non-specialists in mymarid taxonomy (Triapitsyn 2004). Huber’s (1988) revision of the Nearctic species of the *ater* species group of *Gonatocerus* provided a good basis for this key. Besides allowing for recognition of both sexes of the included *Gonatocerus* species, the key presented here also includes representatives of two other mymarid genera with known Proconiini host associations, *Anagrus* Haliday and *Acmopolynema* Ogloblin.

Material and methods

All mymarid parasitoids resulting from those surveys were preserved in 70% or 95% ethanol and later point- and slide-mounted (in Canada balsam), examined (under Zeiss Axioskop 2 plus compound microscope using Nomarski differential interference contrast optics), and photographed (using Sony DSC-S75 digital still camera), identified, and deposited in the Entomology Research Museum, University of California at Riverside, California [UCRC]. I also examined voucher specimens of the mymarid parasitoids of Proconiini eggs from past research projects as well as some non-reared specimens belonging to the species of interest to this study. They are stored in UCRC and the following museum collections: Canadian National Collection of Insects, Ottawa, Ontario, Canada [CNCI]; California State Collection of Arthropods, California Department of Food and Agriculture, Sacramento, California [CSAC]; San Diego Natural History Museum, San Diego, California [SDMC]; Department of Entomology, Texas A&M University,
Terms for morphological features in the taxonomic key and descriptions are those of Gibson (1997). Measurements (as length or length/width, where applicable) are given in micrometers (μm). An abbreviation used is: F = antennal funicle segment in females or antennal flagellar segment in males.

Key to genera and species of Mymaridae, egg parasitoids of Proconiini (Cicadellidae) in the Nearctic region

1 Tarsi 4-segmented ... 2
 - Tarsi 5-segmented (Gonatocerus Nees) .. 4

2 Metasoma distinctly petiolate; forewing blade with dark bands and modified setae (Fig. 1) .. Acmopolynema sema Schaff
 - Metasoma sessile (Fig. 2); forewing blade without dark bands or modified setae (Anagrus Haliday) .. 3

3 Forewing narrow (Fig. 2), 8.0–9.5x as long as wide; clava of female antenna with 5 longitudinal sensilla ... Anagrus epos Girault
 - Forewing wide, 4.5–4.9x as long as wide; clava of female antenna with 6 longitudinal sensilla ... Anagrus stethyioides S. Triapitsyn

4 Female (flagellum clavate, consisting of 8-segmented funicle and 1-segmented clava) ... 5
 - Male (flagellum filiform, 11-segmented) .. 15

5 Propodeum distinctly rugose lateral to submedial carinae (Figs 4, 8, 11) (morrilli subgroup) ... 6
 - Propodeum smooth lateral to submedial carinae (as in Fig. 23) (ater subgroup) 8

6 Body mostly dark brown to black; F5 brown basally and whitish or light brownish apically, F6 whitish-light brownish (Fig. 3) G. morgani S. Triapitsyn, sp. n.
 - Body mostly yellow-brown; both F5 and F6 white (as in Fig. 10) 7

7 Propodeum with submedial carinae parallel and closer to each other (Fig. 8) G. morrilli (Howard)
 - Propodeum with submedial carinae curved and more apart from each other (Fig. 11) . G. walkerjonesi S. Triapitsyn, sp. n.

8 Forewing with cubital row of microtrichia complete, extending to base of marginal vein (Figs 16, 17, 24, 27) ... 9
 - Forewing with cubital row of microtrichia incomplete, not extending to base of marginal vein (no microtrichia behind marginal vein, at most a few microtrichia just behind apex of venation) (Figs 28, 30) ... 13
9 F5–F7 distinctly lighter than other funicle segments (Fig. 15) G. atriclavus Girault
 - F5–F7 more or less concolorous with other funicle segments 10
10 Forewing blade with a narrow, distinct brown fascia extending from stigmal vein to hind margin (Fig. 17) ... G. fasciatus Girault
 - Forewing blade without such a fascia or slightly, more or less uniformly, infumated ...

11 Head and mesosoma mostly yellow, with some brown (Fig. 20) G. triguttatus Girault
 - Head and mesosoma mostly dark brown (as in Fig. 25) except mesosomal sternum with a distinct, well-defined yellow streak between each fore and middle coxae (Fig. 22) .. 12
12 F1 without longitudinal sensilla (Fig. 21); forewing almost hyaline, at most with a faint, uniform brownish tinge (Fig. 24) .. G. ashmeadi Girault
 - F1 usually with 2 longitudinal sensilla (Fig. 26), rarely with 1 sensillum; forewing blade notably infuscated beyond venation, more conspicuously so behind tip of venation (Fig. 27) .. G. uat S. Triapitsyn
13 Forewing blade with a distinct infumate spot just beyond apex of venation (Fig. 28)
 - Forewing blade without infumate spot (as in Fig. 30) (the incomptus/impar complex)

14 F3–F8 each with 2 longitudinal sensilla (Fig. 29) ... G. incomptus Huber
 - At least one funicle segment among F3–F6 without longitudinal sensilla or only with 1 sensillum, in different combinations (Figs 31–34) ..
 - G. impar Huber, G. sp(p). near incomptus/impar
15 Propodeum distinctly rugose lateral to submedial carinae (Figs 4, 8, 11) (morrilli subgroup) .. 16
 - Propodeum smooth lateral to submedial carinae (as in Fig. 23) (ater subgroup) .. 18
16 Mesosoma dark brown to black; forewing blade hyaline (as in Fig. 5)
 - Mesosoma yellowish-brown; forewing blade with an infumate spot (sometimes inconspicuous) just beyond venation (as in Fig. 12) ... 17
17 Propodeum with submedial carinae parallel and closer to each other (as in Fig. 8); apodeme of genital sternite almost as long as aedeagal apodemes (Fig. 9)
 - Propodeum with submedial carinae curved and more apart from each other (as in Fig. 11); apodeme of genital sternite notably longer than aedeagal apodemes (Fig. 14)
 - G. walkerjonesi S. Triapitsyn, sp. n.
18 Forewing with cubital row of microtrichia complete, extending to base of marginal vein (Figs 16, 17, 24, 27) ... 19
 - Forewing with cubital row of microtrichia incomplete, not extending to base of marginal vein (no microtrichia behind marginal vein, at most a few microtrichia just behind apex of venation) (as in Figs 28, 30) .. 23
19 Forewing blade with a narrow, distinct brown fascia extending from stigmal vein to hind margin (as in Fig. 17) ... G. fasciatus Girault
- Forewing blade without such a fascia or slightly, more or less uniformly, infumated

20 Mesosoma dorsally yellow-orange or light brown to brown .. 21
- Mesosoma completely dark brown .. 22

21 Mesosoma dorsally yellow-orange, with some brown G. triguttatus Girault
- Mesosoma dorsally light brown to brown, with some dark brown G. atriclavus Girault

22 Forewing almost hyaline, at most with a faint, uniform brownish tinge (as in Fig. 24) (widespread in southeastern USA, southern and south-central California, as well as in northeastern Mexico (Nuevo León and Tamaulipas North of [and including] Ciudad Victoria) ... G. ashmeadi Girault
- Forewing blade notably infuscated beyond venation, more conspicuously so behind tip of venation (as in Fig. 27) (in the Nearctic region, occurring only in the southernmost Nearctic part of Tamaulipas, Mexico, South of [but excluding] Ciudad Victoria)

... G. uat S. Triapitsyn

23 Forewing blade with a distinct infumate spot just beyond apex of venation, not reaching anterior margin (as in Fig. 28) ... G. novifasciatus Girault
- Forewing blade hyaline, without infumate spot (as in Fig. 30) (the incomptus/impar complex) G. incomptus Huber, G. impar Huber, G. sp(p). near incomptus /impar

Acmopolynema sema Schauff, 1981
(Fig. 1)

Type locality
Fort Valley, Peach Co., Georgia, USA.

Material examined [UCRC]

Diagnosis
Well described and illustrated by Schauff (1981). The main distinguishing features of this species are as follows. Body length 1000–1300. Body brown to dark brown; several
antennal and leg segments, and petiole yellow to light brown. Forewing (Fig. 1) with two large brown bands, enlarged modified discal setae restricted to the proximal large band.

Distribution

Florida, Georgia, and Texas (Schauff 1981; Triapitsyn, Hoddle and Morgan 2002); common and widespread in southeastern USA; also occurs in Mexico and southeastern Canada (V.V. Berezovskiy and S.V. Triapitsyn, unpublished).

Hosts

Homalodisca insolita (Walker); under laboratory conditions, *A. sema* was also briefly reared (with limited success) on eggs of *Homalodisca coagulata* (Say) (Triapitsyn, Hoddle and Morgan 2002).

Comments

The host of *A. sema, H. insolita*, is a common grass-feeding species in southeastern USA and Mexico (Turner and Pollard 1959; Tipping *et al.* 2005).

Anagrus epos Girault, 1911

(Fig. 2)

Anagrus epos Girault 1911: 292–293.

Type locality

Centralia, Marion Co., Illinois, USA.

Material examined

Diagnosis

Body length 300–600. Body mostly yellow, with a conspicuous dark band across the gaster in the specimens from Minnesota (Fig. 2). Female antenna with F1 subglobular, less than half length of pedicel; F2–F5 usually subequal, F6 longest of funicular segments; F3–F5 usually with 1 longitudinal sensillum each, F6 with 2, and clava with 5 longitudinal sensilla. Mesoscutum with a pair of adnotaular setae. Forewing 8.0–9.5x as long as wide; with 1 to 3 irregular rows of discal setae (1 such row on basal 1/3 of blade beyond venation), leaving a well differentiated bare area in broadest part of blade near posterior margin. Ovipositor at least slightly, sometimes markedly exserted beyond apex of metasoma. Outer plates of ovipositor each with 3 setae, rarely with 2. Ovipositor: foretibia ratio 2.4–3.1:1. Male similar to female except for normal sexually dimorphic characters and a darker body color.

FIGURES 1, 2. 1. Forewing of Acmopolynema sema (female). 2. Anagrus epos (female).

Distribution

Mexico (Baja California and Sonora) and USA (Colorado, Illinois, Kentucky, Massachusetts (new record), Minnesota, New Mexico, and New York) (Triapitsyn 1998). Recently released in California against H. coagulata (Pilkington et al. 2005).

Hosts

Cuerna fenestella Hamilton (Triapitsyn and Rakitov 2005) as well as Dikrella sp.,
Erythroneura aclys McAtee, E. bistrata McAtee, E. comes (Say), Erythroneura maculata Gillette (new record), E. variabilis Beamer, E. vulnerata Fitch, and undetermined Erythroneura spp. (Triapitsyn 1998); also Homalodisca coagulata (Say) (under laboratory conditions only) (Hoddle and Triapitsyn 2004b; Triapitsyn and Rakitov 2005).

Comments
A colony of this species successfully reproduced on H. coagulata eggs at UCR Quarantine Laboratory and is considered a potentially promising biological control agent for introduction against glassy-winged sharpshooter in California (Hoddle and Triapitsyn 2004b). The colony was established from the specimens collected in Minnesota, which emerged in UCR quarantine (see “Material Examined”); mated females were then exposed to fresh eggs of H. coagulata (laid in leaves of Euonymus japonica) on 9.vi.2004, and the next generation emerged 29–30.vi.2004 (vouched in UCRC are 5 females and 1 male of these first generation wasps).

Anagrus stethynioides S. Triapitsyn, 2002

Anagrus stethynioides Triapitsyn 2002c: 216, 221.

Type locality
Chyilla, Sacatepequez, Guatemala.

Diagnosis
This peculiar species has a very wide forewing (4.5–4.9x as long as wide), with the longest marginal setae subequal to or slightly longer than the maximal forewing width; clava of the female antenna with 6 longitudinal sensilla (Triapitsyn 2002c).

Distribution
Argentina, Guatemala, Mexico (Nuevo León and Yucatán), Trinidad and Tobago, and USA (Texas) (Triapitsyn 2002c).

Host
Homalodisca coagulata (Say) in Gillespie Co., Texas, USA (Lauzière & Hassell 2006).

Gonatocerus morgani S. Triapitsyn, sp. n.
(Figs 3–7)

Type material
Holotype female on slide [UCRC]: USA. CALIFORNIA: Orange Co., Irvine, Irvine
Ranch (Old Irvine Ranch Rd.), 17.ix.2003, L. Higgins, ex. egg mass of *Homalodisca coagulata* (Say) on lemon leaf, emerged at CDFA GWSS biocontrol facility (i.e., the California Department of Food and Agriculture Mt. Rubidoux Field Station in Riverside, California, date of emergence 26.ix.2003, preserved by D.J.W. Morgan). Paratypes: same data as the holotype [1 female on slide as well as 1 female on card, 1 male on slide, and 2 females in 95% ethanol stored in a freezer at -20°C for use in molecular studies, UCRC]; Riverside Co., Riverside, 45 Glenwood Drive, California Department of Food and Agriculture Mt. Rubidoux Field Station, 14.x.2003, D.J.W. Morgan [8 females and 4 males on points, 1 female on slide (except mesosoma on stub for SEM), as well as 1 male on slide (first generation progeny of holotype and paratypes, CNCI, CSAC, UCRC, USNM)].

Additional material examined

USA. CALIFORNIA, San Diego Co., San Marcos, 20.iv.2005, J. Nichols [5 females, ex. *H. coagulata* eggs, preserved in ethanol for molecular studies, California Department of Food and Agriculture Mt. Rubidoux Field Station, Riverside, California]. Because these specimens are likely to be destroyed and are not kept in a museum collection, they are not designated as paratypes.

Description

FEMALE (holotype and paratypes). Body length 1420–1760. Body mostly dark brown except for face (mostly brown but yellow around and above toruli), petiole (light brown), gastral sterna, and first gastral tergum (brown). Inner surface of scape brown, outer surface brownish yellow; pedicel and flagellum brown to dark brown except for F5 (brown basally and whitish or light brownish apically) and F6 (pale light brownish). Coxae brown basally as well as metatibia, metatarsus, and apical tarsomeres of foreleg and middle leg; remainder of leg segments yellow to yellowish brown.

Antenna (Fig. 3) with radicle about 2.2 x as long as wide, scape about 2.7 x as long as wide, almost smooth; pedicel longer than F1; F1–F4 narrower than F5–F8, F3 longest, F1 and F8 shortest of funicle segments; F1 without sensilla, F2 usually with 1 longitudinal sensillum but sometimes without sensilla, F3–F8 each with 2 longitudinal sensilla; all funicle segments densely setose; clava with 8 longitudinal sensilla, 3.0–3.3 x as long as wide, longer than combined length of F1–F3, its ventral surface covered with numerous minute, short setae and placoid sensilla, its dorsal surface densely covered with longer setae.

Mesosoma. Pronotum reticulate; mesoscutum, scutellum, axillae, and dorsellum almost smooth. Each lobe of pronotum with 2 strong dorsal and 2 weak lateral setae. Mesoscutum wider than long, a little shorter than scutellum; midlobe of mesoscutum with a pair of strong setae. Dorsellum rhomboidal. Propodeum (Fig. 4) with well-developed lateral carinae and submedial carinae, almost smooth between submedial carinae and notably wrinkled between submedial and lateral carinae and also lateral to lateral carinae. Foretibia with 2 or 3 conical sensilla. Forewing (Fig. 5) 3.2–3.3 x as long as wide; marginal cilia short, the longest marginal cilia about 1/5 maximum wing width. Forewing blade hyaline, bare behind venation except for several scattered microtrichia behind stigmal and apex of marginal veins, remainder of blade densely setose. Submarginal vein with 1 macrochaeta and 2 microchaetae, marginal vein with 4 or 5 strong setae between proximal and distal macrochaetae; hypochaeta about half way between these macrochaetae. Hind wing 17–18 x as long as wide; blade bare except for complete rows of microtrichia along margins and several scattered discal setae beyond tip of venation.

Metasoma. Petiole short, a little wider than long, trapezoidal. Ovipositor about 7/10 length of gaster, barely exserted beyond its apex. Ovipositor: mesotibia ratio about 1.2:1.
Outer plates of ovipositor each with 1 distal seta.

Measurements of the holotype. Body: total body length: 1760; head 198; mesosoma 646; petiole 61; gaster 861; ovipositor 640. Antenna: radicle 82; scape 203; pedicel 76; F1 67; F2 85; F3 94; F4 88; F5 88; F6 79; F7 79; F8 61; clava 297. Forewing 1556:473; longest marginal cilia 100. Hind wing 1113:64; longest marginal cilia 127.

MALE (paratypes). Body length 1350–1650. Similar to female in coloration except vertex pale or yellowish brown (ocellar triangle dark brown), flagellum entirely dark brown, and petiole brown. Antenna (Fig. 6) with scape about 2 x as long as wide; pedicel very small, F1 notably shorter than following flagellar segments, all flagellomeres with numerous longitudinal sensilla. Genitalia (Fig. 7) typical of the morrilli subgroup of the ater species group.

Etymology
This species is named in honor of Dr. David J.W. Morgan (California Department of Food and Agriculture).

Diagnosis
This new species does not match with any species of Gonatocerus described from South America by A.A. Ogloblin (J.T. Huber, personal communication). The dark body color and the color of the flagellar segments of the female antenna distinguishes G. morgani from the other described species from the morrilli subgroup of the ater group, such as G. annulicornis (Ogloblin), G. morrilli, and G. walkerjonesi sp. n., all of which have more or less yellow-orange bodies with some dark spots. However, G. morgani is somewhat similar to several undetermined and apparently undescribed species from Central America, which suggests that it could be self-introduced into California from that region following establishment of H. coagulata in southern California in the 1990s, when huge numbers of unparasitized egg masses of this host became easily available for any accidentally introduced Gonatocerus egg parasitoid of Proconiini. This species had never been collected in California before its type series was first reared in 2003. However, it might also be a native species that just had been missed by collectors.

Host
Homalodisca coagulata (Say). Gonatocerus morgani successfully reproduced under laboratory conditions (in cages at the California Department of Food and Agriculture Mount Rubidoux Field Station, Riverside, California) on eggs of this host (D.J.W. Morgan, personal communication).

Gonatocerus morrilli (Howard, 1908)
(Figs 8, 9)
Cosmocomoidea morrilli Howard 1908: 69.

Type locality

Orlando, Orange Co., Florida, USA.

Material examined

Diagnosis

Very similar to _G. walkerjonesi_ sp. n. described below. It differs by the parallel submedial carinae on the propodeum, with a narrower gap between them (Fig. 8). The petiole is generally relatively longer in _G. morrilli_ (usually at least 1.5x as long as wide) than in _G. walkerjonesi_ (usually about as long as wide). Males have a relatively shorter apodeme of the genital sternite, which is almost as long as the aedeagal apodemes (Fig. 9). This species belongs to a complex of similarly looking species within the _morrilli_ subgroup of _Gonatocerus_, all of which have a mostly yellow-orange body and F5 and F6 of the female antenna white (F5 sometimes at least partially) (S. Triapitsyn in Hoddle and Stouthamer 2005). Using molecular methods, de León (2004b, 2004c) and de León et al. (2004, 2005) showed that the California (Orange and San Diego Counties) population of _G._ sp. near _morrilli_ (i.e., _G. walkerjonesi_ described in this communication) is significantly different genetically from the populations of _G. morrilli_ from southern Texas and Florida. Specimens of _G. morrilli_ from the Texas population are genetically identical to the specimens from Florida (de León et al. 2004), from where this species was originally described. They are also identical morphologically.

Distribution

Mexico and USA (Arizona [new record], California, Florida, Georgia, Louisiana, North Carolina [new record], Texas). Populations from Texas and Tamaulipas (Mexico) were supposedly introduced into California (Morgan et al. 2002; Triapitsyn, Bezark and Morgan 2002; Pilkington et al. 2005) although a later report (de León and Morgan 2005) indicated that it was the California native “California near _morrilli_ species”) (i.e., _G. walkerjonesi_ sp. n. described below) that actually had been released in California due to contamination of the cultures of the insectary-reared _G. morrilli_ with this similarly looking species. Thus, the three females collected in Menifee Valley, Riverside Co., in 1981 seem to be the only specimens from California that at least morphologically can be tentatively identified as _G. morrilli_. Unfortunately, attempts to extract DNA from these old, dry-mounted specimens for sequencing failed (H. van Oosten, personal communication). The identity of the only other California native specimen, a female collected at UCR campus, in Riverside, in 1984 (Huber 1988), cannot be verified because it could not be located in CNCI (J.T. Huber, personal communication).
Hosts

Homalodisca coagulata (Say), H. liturata Ball, Oncometopia clarior (Walker), O. nigricans (Walker), O. sp. near nigricans (Walker), and other Oncometopia spp., also likely including O. orbona (Fabricius).

Gonatocerus walkerjonesi S. Triapitsyn, sp. n.
(Figs 10–14)

Gonatocerus morrilli (Howard): Phillips et al. 2001: 95 (misidentification of the specimens from Ventura Co., California, USA).

Type material

FIGURE 14. Genitalia of *Gonatocerus walkerjonesi* (male).

Additional material examined

NICARAGUA. MASAYA, Las Flores, 12°00.208’N, 86°01.190’W, 410’ el., 16.iii.2004, M.S. Hoddle (ex. egg mass of a proconiine sharpshooter on avocado leaf) [4 females, 2 males, UCRC]. USA. CALIFORNIA, Riverside Co., Riverside, UCR campus, 20.x.2003, J. Ng (on lemon) [1 female, originally in UCRC, then destroyed for molecular study].

Description

FEMALE (holotype and paratypes). Body length 1400–1850. Body and appendages mostly yellowish-orange-light brown except for the following: F5 and F6 white; pedicel, two spots on basal gastral tergum, several spots on distal gastral terga, and metatibia brown; trabeculae, ocellar triangle, F1–F4, F7, F8, clava, and a wide band on medial metasomal terga dark brown.

Antenna (Fig. 10) with radicle about 2.5 x as long as wide, scape 3.1–3.2 x as long as
wide, lightly longitudinally striate; pedicel as long as F1; F2 as long as F3, both the longest funicle segments; F8 shortest funicle segment; F1 without sensilla, F2–F8 each with 2 longitudinal sensilla; all funicle segments densely setose; clava with 8 longitudinal sensilla, about 3.7 x as long as wide, about as long as combined length of F1–F3, its ventral surface covered with numerous minute, short setae and placoid sensilla, its dorsal surface densely covered with longer setae.

Mesosoma. Pronotum, mesoscutum, scutellum, and axillae lightly punctate; dorsellum smooth. Each lobe of pronotum with 2 strong dorsal and 3 weak lateral setae. Mesoscutum wider than long, a little shorter than scutellum; midlobe of mesoscutum with a pair of strong setae. Dorsellum rhomboidal. Propodeum (Fig. 11) with well-developed lateral carinae and subparallel (slightly curved medially) submedial carinae, notably wrinkled (less so between submedial carinae). Foretibia with 3 or 4 conical sensilla. Forewing (Fig. 12) 3.5–3.7 x as long as wide; marginal cilia short, longest marginal cilia about 1/5 maximum wing width. Forewing blade slightly infumated beyond venation, with conspicuous dark spot just beyond tip of venation (not reaching anterior margin); bare behind venation except for several scattered microtrichia behind stigmatic and apex of marginal veins, remainder of blade densely setose. Submarginal vein with 1 macrochaeta and 2 microchaetae; marginal vein usually with 6, sometimes with 5, strong setae between proximal and distal microchaetae; hypochaeta closer to distal macrochaeta than to proximal macrochaeta. Hind wing 18–22 x as long as wide; blade bare except for complete rows of microtrichia along margins and an incomplete row of discal setae starting just beyond tip of venation.

Metasoma. Petiole relatively short, usually about as long as wide but sometimes either slightly wider than long or longer than wide, trapezoidal. Ovipositor about 3/4 length of gaster, not or barely exserted beyond its apex. Ovipositor: mesotibia ratio about 1.0:1. Outer plates of ovipositor each with 1 distal seta.

Measurements of the holotype. Body: total body length: 1688; head 200; mesosoma 769; petiole 92; gaster 830; ovipositor 627. Antenna: radicle 115; scape 261; pedicel 90; F1 90; F2 144; F3 144; F4 127; F5 112; F6 100; F7 106; F8 82; clava 388. Forewing 1974:547; longest marginal cilia 115. Hind wing: 1446:79; longest marginal cilia 140.

MALE (paratypes). Body length 1450–1720. Body mostly light brown to dark brown (more so dorsally), with yellowish spots; antenna brown to dark brown, legs light brown to brown. Antenna (Fig. 13) with scape about 2 x as long as wide; pedicel very short, F1 a little shorter and wider than following flagellar segments which are more or less subequal in length; all flagellomeseres with numerous longitudinal sensilla. Forewing 3.3–3.6 x as long as wide. Genitalia (Fig. 14) typical of the morrilli subgroup.

Etymology

This species is named in honor of Dr. Walker A. Jones (United States Department of Agriculture — Agricultural Research Service).
Diagnosis

This new species is very similar to *G. morrilli*. It differs by the propodeum with the submedial carinae curved and more apart from each other (Fig. 11). Male genitalia of these two species are also different: in *G. walkerjonesi*, the apodeme of the genital sternite is notably longer than the aedeagal apodemes (Fig. 14). *Gonatocerus walkerjonesi* is even more similar morphologically (especially the carinae on the propodeum) and apparently more closely related genetically to *G. annulicornis* (Ogloblin) from Argentina (Hoddle and Stouthamer 2005), which lacks the dark cloud on the forewing in both sexes and whose males have relatively shorter antennae and are generally lighter colored (particularly the mesosomal dorsum) than those of *G. walkerjonesi*.

Hosts

Homalodisca coagulata (Say) and *H. liturata* Ball.

Gonatocerus atriclavus Girault, 1917

(Figs 15, 16)

Gonatocerus triguttatus atriclavus Girault 1917: 19 (as a new variety).

Gonatocerus triguttatus atriclavus Girault: Huber 1988: 57.

Gonatocerus atriclavus Girault: Triapitsyn, Bezark and Morgan 2002: 35–38 (lectotype designation, redescription, diagnosis, distribution, host associations, failed rearing attempts on eggs of *H. coagulata*).

Type locality

Mitán, Trinidad Island, Trinidad and Tobago.

Material examined [UCRC]

Diagnosis

Body length 1580–1900. Female coloration as follows. Head pale except upper face and ocellar triangle brown, trabeculae and occiput dark brown, eyes and ocelli dusky. Antenna with scape yellow to light brown; pedicel, F1–F3, F4 (basally) and F7 brown; F4 (distally), F5 and F6 light brown; F8 dark brown; clava black. Neck pale, pronotum pale brown with darker spots; mesoscutum orange-brown anteriorly and yellowish posteriorly, notauli black; anterior scutellum light brown to brown; axilla brown with darker spot at middle; posterior scutellum yellowish-orange-brown; dorsellum, propodeum, pro-, meso-, and metapectura brown; lateral panels of metanotum and propodeal carinae dark brown. Legs yellowish-brown except all tarsi, meso- and metatibiae brown. Wings hyaline; venation brown to dark brown. Petiole dark brown; gaster pale to light yellow with dark brown bands on terga; ovipositor plates brown. Male coloration as follows. Antenna brown to dark brown except base of scape yellow; face brown; ocellar triangle and occiput dark brown, remainder of vertex and gena light brown; eyes and ocelli pinkish brown. Neck light brown; pronotum, mesoscutum (except light brown edges of lateral lobes), axilla, anterior and posterior scutellum, dorsellum, and propodeum shining brown; mesosomal pleura light brown. All legs light brown except mesotibia and meso- and metatarsi slightly darker, metatibia brown. Petiole brown, gaster light brown with several dark cross-bands on terga. Female antenna (Fig. 15) with a dilated scape and very long clava; longitudinal sensilla present on F2–F8. Submedial carinae on the propodeum complete, reaching the dorsellum. Forewing (Fig. 16) with cubital row of microtrichia complete, extending to base of marginal vein.

Distribution

Argentina (new record), Mexico, Trinidad and Tobago. In the Nearctic region, this species was recorded only from Ciudad Victoria in Tamaulipas, Mexico (Triapitsyn, Bezark and Morgan 2002).

Hosts

Homalodisca sp., Oncometopia clarior (Walker), and unknown species of proconiine sharpshooters.
Gonatocerus fasciatus Girault, 1911
(Figs 17, 18)

Gonatocerus fasciatus Girault 1911: 265–266.

Type locality
Arlington, Arlington Co., Virginia, USA.

Material examined

Diagnosis
Body length 560–1320 (Triapitsyn et al. 2003). The main distinguishing features of this species are as follows (mostly after Huber 1988). Head and mesosoma brown to dark brown, gaster mostly yellow or pinkish (often in live or freshly preserved specimens) with brown bands on terga. Longitudinal sensilla present only on F5–F8 of the female antenna. Submedial carinae on the propodeum incomplete, not reaching the dorsellum. Forewing (Fig. 17) with a faint uniform brown tinge beyond venation and a distinct brown fascia between the stigmal vein and the wing’s posterior margin; cubital row of microtrichia complete, extending to base of marginal vein. Habitus of the female is shown in Fig. 18.
Distribution

USA (northern California [new record], District of Columbia [new record], Florida, Georgia, Illinois, Kentucky [new record], Louisiana, Maryland [new record], Mississippi [new record], Missouri, North Carolina [new record], Ohio [new record], Pennsylvania [new record], South Carolina [new record], Tennessee, Texas, Virginia). The species was first introduced into California from Louisiana (Triapitsyn et al. 2003) and later released there against *H. coagulata* (Pilkington et al. 2005).

Hosts

Homalodisca coagulata (Say), *Oncometopia orbona* (Fabricius) (Triapitsyn et al. 2003), and *Paraulacizes irrorata* (Fabricius) (Tipping et al. 2006). Some aspects of the biology of *G. fasciatus* were studied by Irvin and Hoddle (2005a, b).

Comments

This is the only known gregarious species among the North American *Gonatocerus* egg parasitoids of Proconiini (Triapitsyn et al. 2003). Its exit holes can be easily recognized by their number (two, rarely three) and position (at the opposite ends of the host egg if only two holes are present) per each host egg (Fig. 19). By finding old, parasitized egg masses of Proconiini with such exit holes I was able to document during August 2004 presence of *G. fasciatus* in Yamassee, South Carolina (in eggs of *H. coagulata* and *O. orbona* on crape myrtle) and also at several locations in North Carolina: Garner (in eggs of *H. coagulata* on crape myrtle), near Greensboro (in eggs of *O. orbona* on crape myrtle), and near Warsaw (in eggs of *H. coagulata* on an undetermined tree).

FIGURES 18, 19. 18. *Gonatocerus fasciatus* (female). Photo by Jack Kelly Clark, University of California. 19. Exit holes of *G. fasciatus* (parasitized egg mass of *Oncometopia orbona* on gardenia leaf).
The recent discovery of *G. fasciatus* in northern California among the specimens collected near Yreka, Siskiyou Co. by R.A. Rakitov at a site where a native sharpshooter, *Cuerna unica* Nielson, occurs (R.A. Rakitov, personal communication), suggests that this species is native there (also because it is very far away from the areas of southern California where it was released against *H. coagulata*).

Gonatocerus triguttatus Girault, 1916
(Fig. 20)

Gonatocerus triguttatus Girault 1916: 297–298.

Type locality
Caroni, Trinidad Island, Trinidad and Tobago.

Material examined

Diagnosis

The main distinguishing features of this species are as follows (mostly after Huber 1988). Body length (female) 1520–1880. Head and mesosoma of female generally yellow, gaster light yellow with brown bands on terga. Mesonotum of male slightly darker, with light brown or brown areas. Longitudinal sensilla present on all funicle segments (F1–F8) of the female antenna. Submedial carinae on the propodeum thick, distinct, reaching the dorsellum. Wings hyaline; cubital row of microtrichia on forewing blade complete, extending to base of marginal vein. Habitus of the female is shown in Fig. 20. *Gonatocerus triguttatus* is closely related to *G. uat* S. Triapitsyn and *G. ashmeadi* Girault (see cladogram in Triapitsyn *et al.* 2006).

![FIGURE 20. *Gonatocerus triguttatus* (female). Photo by Jack Kelly Clark, University of California.](image)

Distribution

Ecuador (new record), Mexico, Nicaragua (new record), Peru (Logarzo *et al.* 2004), Trinidad and Tobago, USA (Florida, Texas). Introduced into California against *H. coagulata* (initially from Tamaulipas, Mexico and then from Texas) and established there.
(Morgan et al. 2000; Morgan et al. 2002; Triapitsyn, Bezark and Morgan 2002; Pilkington et al. 2005).

Hosts

Homalodisca coagulata (Say), _H. liturata_ Ball (under laboratory conditions and also likely in the field following introduction into southern California), _Oncometopia clarior_ (Walker), _O. nigricans_ (Walker), _Oncometopia_ sp., and _Pseudometopia amblardii_ (Signoret) or _P. phalaesia_ (Distant). Some aspects of the biology of _G. triguttatus_ were studied by Irvin and Hoddle (2004; 2005a, b).

Gonatocerus ashmeadi Girault, 1915
(Figs 21–25)

Gonatocerus dolichocerus var. _ashmeadi_ Girault 1915: 8.

Type locality

An unspecified locality in Texas, USA.

Material examined

Diagnosis

The main distinguishing features of this species are as follows (mostly after Huber 1988). Body length (female) 1280–1760. Head and mesosoma generally dark brown, legs and gaster mostly yellow with brown bands on gastral terga; gaster may be almost completely dark brown in some males. Longitudinal sensilla present on F2–F8 of the female antenna; F1 without sensilla (Fig. 21). Mesosomal sternum with a distinct, well-defined yellow streak between each fore and middle coxae (Fig. 22). Submedial carinae on the propodeum thick, distinct, reaching the dorseculum (Fig. 23). Forewing (Fig. 24) hyaline or at most with a faint uniform brown tinge; cubital row of microtrichia on forewing blade complete, extending to base of marginal vein. Habitus of the female is shown in Fig. 25. *Gonatocerus ashmeadi* is most closely related to *G. uat* S. Triapitsyn (Triapitsyn et al. 2006), from which it can be distinguished using the characters indicated in the key. Among the unrelated North American species of *Gonatocerus*, *G. ashmeadi* can be quite easily
confused with another common and superficially very similarly looking (especially the coloration) species, *G. dolichocerus* Ashmead, which belongs to the *bucculentus* subgroup of the *ater* species group (Huber 1988). Besides the subspecies-group distinguishing features indicated in Huber’s (1988) key to the North American species of the *ater* species group of *Gonatocerus*, females of *G. dolichocerus* can be separated from those of *G. ashmeadi* by a relatively shorter F1. I myself accidentally misidentified several specimens of *G. dolichocerus* as *G. ashmeadi* (Vickerman et al. 2004), with the following label data: USA: Louisiana, East Baton Rouge Parish, Baton Rouge, 2–4.iv.2002, S.V. Triapitsyn [3 females, UCRC]; Missouri, St. Clair Co., Chapel View Prairie, 29.vi.1999, M.W. Gates [1 female, UCRC].

Distribution

Mexico (Nuevo León and Tamaulipas) and USA (California, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Texas); its occurrence in Alabama and southern Arkansas, although not documented, is also very likely. The southern and southeastern USA strains of *G. ashmeadi* were released in California against *H. coagulata* (Morgan et al. 2002; Pilkington et al. 2005). Self-introduced into Oahu Island, Hawaii (USA), where *G. ashmeadi* provides a good control of *H. coagulata*; intentionally and successfully introduced into Tahiti, Society Islands, French Polynesia, for biological control against *H. coagulata* (Mark S. Hoddle, personal communication). Self-introduced into Easter Island (Chile) (new record), probably from French Polynesia; specimens were sent to me for identification by Sandra Ide Mayorga (Santiago, Chile). Triapitsyn et al. (2006) provided label data for the specimens of *G. ashmeadi* from Honolulu, Oahu Island, Hawaii (USA) that were sequenced for the molecular comparison with the North American specimens of this species and also with *G. uat* S. Triapitsyn.

FIGURE 25. *Gonatocerus ashmeadi* (female). Photo by Jack Kelly Clark, University of California.

Hosts

Cuerna costalis (Fabricius), *Homalodisca coagulata* (Say), *H. liturata* Ball, *Oncometopia clarior* (Walker), *O. orbona* (Fabricius), and *Oncometopia* sp. Biological traits of *G. ashmeadi* are well known (Irvin and Hoddle 2004; 2005a, b; Velema et al. 2005).
Comments

It can be supposed that *G. ashmeadi* might not be native to California; rather, it probably had accidentally introduced itself into California from somewhere in southern or southeastern USA long ago (before the 1980s) and established there on eggs of *H. liturata*, the local proconiine sharpshooter. Following establishment of *H. coagulata* in southern and central California during the 1990s, *G. ashmeadi* simply switched back to its natural host, providing good control of the summer brood of the glassy-winged sharpshooter. The molecular data reported by Vickerman et al. (2004) and de León and Jones (2005) may support such an assumption.

Gonatocerus uat S. Triapitsyn, 2006
(Figs 26, 27)

Type locality
Ciudad Valles, San Luis Potosí, Mexico.

Diagnosis

Gonatocerus uat is very similar to *G. ashmeadi*, from which it can be distinguished by F1 of the female antenna usually having 2 (rarely 1) longitudinal sensilla (Fig. 26) (always none in *G. ashmeadi*, Fig. 21) and also by the forewing blade being notably infuscated beyond venation, more conspicuously so behind the tip of the marginal vein (Fig. 27) (at
most with a faint, uniform brownish tinge in \textit{G. ashmeadi}, Fig. 24). Triapitsyn et al. (2006) also provide molecular evidence of the clear separation between \textit{G. ashmeadi} and \textit{G. uat}.

Distribution

Argentina, Mexico (Tamaulipas, San Luis Potosí), and Peru (Triapitsyn et al. 2006). In the Nearctic region, it is known only from Llera de Canales in Tamaulipas, Mexico, just north of the “border” between the Nearctic and Neotropical regions.

Hosts

\textit{Homalodisca} sp., \textit{Oncometopia} spp., \textit{Pseudometopia amblardii} (Signoret) and \textit{P. phalaesia} (Distant), as well as \textit{Tapajosa rubromarginata} (Signoret) (Triapitsyn et al. 2006).

Gonatocerus novifasciatus Girault, 1911

(Fig. 28)

\textit{Gonatocerus novifasciatus} Girault 1911: 266–267.

Type locality

An unspecified locality in Tennessee, USA.

Material examined

Diagnosis

The main distinguishing features of this species are as follows (after Huber 1988). Body length (female) 912–1232. Body generally dark brown. Longitudinal sensilla usually present on F3–F8 of the female antenna (F4 rarely lacking sensilla); F1 and F2 usually without sensilla (F2 rarely with 1 longitudinal sensillum). Submedial carinae on the propodeum prominent, uniformly thickened, reaching the dorsellum. Forewing (Fig. 28) hyaline or with a faint uniform brown tinge, and usually with a distinct infumate spot just beyond the stigmal vein; microtrichia of blade absent behind venation except for a few setae behind apex of stigmal vein.
Distribution

Canada (Nova Scotia), Mexico, Honduras (new record), and USA (Arkansas, Arizona, California, Florida, Georgia, Hawaii [new record], Illinois, Kansas, Louisiana, Maryland, Missouri, Mississippi, New York [new record], Pennsylvania, Tennessee, Texas, Virginia, West Virginia [new record]).

Hosts

Graphocephala coccinea (Förster), G. versuta (Say), Homalodisca coagulata (Say), H. liturata Ball, and very likely (although not yet documented) Oncometopia orbona (Fabricius). This very distinctive species usually attacks mostly the first (early spring) brood of H. coagulata in southern California.

Gonatocerus incomptus Huber, 1988
(Figs 29, 30)

Type locality

Riverside, Riverside Co., California, USA.

Material examined [UCRC]

Diagnosis

The main distinguishing features of this species are as follows (after Huber 1988). Body length (female) 1232–1344. Body very dark brown to black. Longitudinal sensilla usually present on F2–F8 of the female antenna but F2 sometimes lacking sensilla (Fig. 29). Submedial carinae on the propodeum thick, distinct, parallel, almost reaching the dorsellum. Forewing (Fig. 30) hyaline or with a faint uniform brown tinge; microtrichia of blade absent behind venation except for a few setae behind stigmal vein.

Distribution

USA: reliable records from California, Georgia, Oregon (new record), and also Texas (Lauzière & Hassell 2006).

Hosts

Cuerna costalis (Fabricius), *Homalodisca coagulata* (Say), and *H. liturata* Ball.

Gonatocerus impar Huber, 1988

(Fig. 31)

Type locality

Menifee Valley, Riverside Co., California, USA.

Material examined

Diagnosis

The main distinguishing features of this species are as follows (after Huber 1988). Body length (female) 848–1152. Head and mesosoma dark brown, metasoma brown. Female antenna (Fig. 31) with longitudinal sensilla usually present on F3, F5, F7, and F8 but F3 sometimes lacking sensilla. Submedial carinae on the propodeum fine, subparallel, almost reaching the dorsellum. Wings hyaline; microtrichia of forewing blade absent behind venation except for a few setae behind stigmal vein.

Distribution

USA (Arizona [new record], California).

Host

Unknown.

Gonatocerus sp(p). near incomptus Huber, 1988/impar Huber, 1988 complex
(Figs 32–34)

Material examined [UCRC]

Comments

These forms belong to the Gonatocerus incomptus/impar complex discussed under G. impar by Huber (1988). It is unclear at this point whether they, together with G. incomptus and G. impar, represent just a single, morphologically variable species (especially in the
presence or absence of longitudinal sensilla on F2–F6 of female antennae, as shown in Figs 32–34) or a complex of sibling species. A combined biological, morphological, and molecular study based on freshly collected specimens and live cultures, similar to that on *G. ashmeadi* by Vickerman *et al.* (2004), would be necessary to resolve the identification problems within this complex. My guess would be that they all might belong to the same species, because their males are practically indistinguishable morphologically, and also because the presence or absence of longitudinal sensilla on female funicle segments is known to vary quite significantly in some other species of *Gonatocerus* (e.g., in *G. ater* Förster and *G. uat* S. Triapitsyn). That may be sometimes host- and/or size-related (Triapitsyn *et al.* 2006). Thus, *G. impar* could be just smaller individuals of *G. incomptus* that lack longitudinal sensilla on F4 and F6 of the female antenna.

FIGURES 32–34. Gonatocerus spp. 32. Antenna of *G.* sp. near *impar* (female, Temecula, California). 33. Antenna of *G.* sp. near *impar/incomptus* (female, Hopland, California). 34. Antenna of *G.* sp. near *impar* (female, Pinery Canyon, Chiricahua Mountains, Arizona).

Acknowledgments

I thank John T. Huber (CNCI) for valuable discussions and suggestions. David J.W. Morgan (California Department of Food and Agriculture), Roman A. Rakitov (Center for Biodiversity, Illinois Natural History Survey), Walker A. Jones (USDA-ARS) and many others kindly made specimens available for this study. Vladimir V. Berezovskiy (UCRC) point- and slide-mounted the specimens and made scanning electron micrographs. I am thankful to my wife Tatiana for tolerating my frequent absences during the out-of-state biological control exploratory expeditions. This project was sponsored by a grant from the California Department of Food and Agriculture Pierce’s Disease Control Program.
References

Irvin, N.A. & Hoddle, M.S. (2005b) The competitive ability of three mymarid egg parasitoids...

