A new species of *Lassenia* (Acari: Tanaupodidae) from Turkey

Javad Noei¹*, Emre Inak², Sultan Çobanoğlu² and Alireza Saboori³

1. Department of Plant Protection, Faculty of Agriculture, University of Birjand, Birjand, Iran; E-mail: noei.javad@birjand.ac.ir
2. Ankara University Department of Plant Protection, Faculty of Agriculture, Dışkapı, Ankara, Turkey; E-mails: einak@ankara.edu.tr, Scobanoglu@ankara.edu.tr & coban.sultan@gmail.com
3. Jalal Afshar Zoological Museum, Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran; E-mail: saboori@ut.ac.ir

* Corresponding author

ABSTRACT

Lassenia hemsinensis Noei, Saboori & Çobanoğlu sp. nov. (Acari: Trombidiformes: Tanaupodidae) collected from Hemsin, Rize, Turkey, on *Rumex* sp. (Polygonaceae) (off host) is described. A key to the species of *Lassenia* (larva) of the world is also provided.

KEY WORDS: Hemsin; *Lassenia*; larva; Prostigmata; Trombidiformes.

PAPER INFO.: Received: 6 August 2018, Accepted: 10 September 2018, Published: 15 October 2018

INTRODUCTION

The family Tanaupodidae Thor consists of eight genera including *Atanaupodus* Judson & Mąkol, *Eothrombium* Berlese, *Lassenia* Newell, *Neotanaupodus* Garman, *Polydiscia* Methlagl, *Rhinothrombium* Berlese, *Tanaupodus* Haller and *Tignyia* Oudemans. *Atanaupodus, Eothrombium, Neotanaupodus, Rhinothrombium, Tanaupodus and Tignyia* [the *Tignyia* has been based on postlarval forms and it has been erroneously listed in Mąkol and Wohltmann (2012)] are based on post-larval forms only, *Lassenia* is based on both larval and post-larval forms and *Polydiscia* is based on larva only (Mąkol and Wohltmann 2012). The genus *Lassenia* consists of seven species six of which being based on larvae, or adults and larvae, viz., *L. lasseni* Newell, 1957 from small species of Diptera resembling Drosophilidae living in subaquatic environment, USA; *L. scutellata* Newell, 1957, from material beaten from shrubs, USA; *L. furcasetosa* Zhang, 1988 from rearing of eggs collected from soil near a water pond, China; *L. xymenae* Haitlinger, 1995 from plants, Poland; *L. castronuoviensis* Haitlinger, 2012 from herbaceous plants, Italy; and *L. novoseljensis* Haitlinger and Šundić, 2015 from herbaceous plants, Montenegro (Newell 1957; Zhang 1988; Haitlinger 1995; Haitlinger 2012; Haitlinger and Šundić 2015).

In this paper, we describe a new species of larval *Lassenia* from Turkey.

MATERIAL AND METHODS

The specimen was collected on *Rumex* sp. (Polygonaceae) (off host) by Emre Inak, 14.05.2016, Rize-
Hemşin, cleared in Nesbitt's fluid and mounted on glass microscope slides using Hoyer's medium (Walter and Krantz 2009). Figures were drawn and measurements (given in micrometers, μm) were made using a BX51 phase contrast Olympus microscope equipped with a drawing tube.

The terminology and abbreviations follow Makol (2007) and Saboori et al. (2009) except for the following characters: IL — idiosoma length, IW — idiosoma width, W — scutum width and cs — adoral seta.

RESULTS

Lassenia Newell, 1957

Type species: Lassenia lasseni Newell, 1957

Lassenia hemsinensis Noei, Saboori & Çobanoğlu sp. nov. (Figs. 1–11)

Diagnosis

fD = 4.4–4.6–4. =22.

Description (Larva)

Dorsum (Figs. 1–2) — Dorsum of idiosoma with 22 dorsal barbed setae (with minute barbs and not strongly plumose), each arises from a smooth sclerite, arranged in 5 rows, fD = 4.4–4.6–4 = 22: c1–2, d1–2, e1–2, f1–3 and h1–2 (Figs. 1, 3). Scutum divided into two portions, the anterior portion small, almost trapezoidal (45 × 25), fitted in concavity of anterior border of posterior portion of scutum and bearing the anterior sensilla (ASens). The posterior portion quadrat-shaped, bearing normal setae (AL and PL) and posterior sensilla (PSens). ASens and scutalae with minute barbs and not strongly plumose. Posterior sensilla filiform and longer than the anterior sensilla. Posterolaterally on each side of scutum two eyes situated on common ocular plate (55 × 35), posterior eye (diameter 30) larger than anterior one (diameter 16).

Venter (Fig. 3) — Idiosoma ventrally with four pairs (+ an unpaired seta) of ventral setae (fV) behind coxae III, a lateral Lassenia-organ anterior to coxa III and a well-defined anus. The sternal setae 3a bifurcate, smooth and inserted on a smooth sclerite attached to the coxa III. Each ventral seta arises from a smooth sclerite, all setae with some minute barbs. Anal plate 61 long, with one pair of barbed setae on each side of symmetry axis. Coxa I with two barbed setae, 1a and 1b; coxa II with seta 2b with one barb; coxa III with nude seta 3b and bifurcate seta 3a (fn Cx 2-1-2). Claparède's organs between coxae I and II, circular. NDV = 22 + 8(+1) = 31.

Gnathosoma (Figs. 4, 5) — Cheliceral bases (80 long) smooth on dorsal surface; cheliceral blade slightly curved, 19 long, with two subterminal teeth. Adoral seta cs smooth, 15 long; one pair of spine-like subcapitular setae (bs), 3 long; palpfemur 60 long, with two barbed dorsal setae and palpgenu 15 long, with one barbed dorsal seta. Palptibia 40 long, with three barbed setae; palpal tibial claw 27; palptarsus 37 with 7 barbed setae, one solenidion and two eupathidia; fPp = 0-BB-B-BBB-7BoⅢ. Palpal supracoxal setae (eP) peg-like, 8 long.

Legs (Figs. 6–11) — Leg segmentation formula 6-6-6. Each leg tarsus with lateral falciform claws and a claw-like empodium. Leg setal formula. Leg I: Ta – 1ω, 1ε, 2ζ, 2Cr, 33/36n; Ti – 4φ, 1Cr, 1κ, 8n; Ge – 2σ, 1κ, 4n; Fe – 6n; Tr – 1n (Figs. 6–7). Leg II: Ta – 1ω, 1ε, 2ζ, 1Cr, 28/30n; Ti – 2φ, 9n; Ge – 1σ, 1κ, 4n; Fe – 6n; Tr – 1n (Figs. 8–9). Leg III: Ta – 1ζ, 26/25n; Ti – 1φ, 9n; Ge – 1σ, 4n; Fe – 6n; Tr – 1n (Figs. 10–11).

Metric data are given in Table 1.
Etymology

The specific epithet is derived from the type locality, Hemşin, Rize (41° 02' 51.7" N, 40° 53' 46.4" E), Turkey.

Table 1. Measurements of *Lassenia hemsinensis* Noei, Saboori & Çobanoğlu sp. nov. (larva).

<table>
<thead>
<tr>
<th>Character</th>
<th>Holotype</th>
<th>Character</th>
<th>Holotype</th>
<th>Character</th>
<th>Holotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL</td>
<td>580</td>
<td>PDS</td>
<td>80</td>
<td>Leg I</td>
<td>590</td>
</tr>
<tr>
<td>IW</td>
<td>430</td>
<td>PaScFed₁</td>
<td>67/62</td>
<td>Cx II</td>
<td>95</td>
</tr>
<tr>
<td>SD</td>
<td>122*</td>
<td>PaScFed₂</td>
<td>75</td>
<td>Tr II</td>
<td>67</td>
</tr>
<tr>
<td>W</td>
<td>107</td>
<td>PaScGed</td>
<td>57</td>
<td>Fe II</td>
<td>105</td>
</tr>
<tr>
<td>AW</td>
<td>85</td>
<td>1a</td>
<td>57</td>
<td>Ge II</td>
<td>65</td>
</tr>
<tr>
<td>PW</td>
<td>75</td>
<td>1b</td>
<td>75</td>
<td>Ti II</td>
<td>87</td>
</tr>
<tr>
<td>AA</td>
<td>13</td>
<td>2b</td>
<td>40/47</td>
<td>Ta II (L)</td>
<td>137</td>
</tr>
<tr>
<td>SB</td>
<td>37</td>
<td>3a</td>
<td>35</td>
<td>Ta II (H)</td>
<td>30</td>
</tr>
<tr>
<td>ASB</td>
<td>60*</td>
<td>3b</td>
<td>82</td>
<td>Leg II</td>
<td>556</td>
</tr>
<tr>
<td>PSB</td>
<td>62</td>
<td>cs</td>
<td>15</td>
<td>Cx III</td>
<td>105</td>
</tr>
<tr>
<td>MA</td>
<td>37/40</td>
<td>bs</td>
<td>3</td>
<td>Tr III</td>
<td>67</td>
</tr>
<tr>
<td>AP</td>
<td>65/62</td>
<td>Cx I</td>
<td>90</td>
<td>Fe III</td>
<td>107</td>
</tr>
<tr>
<td>AL</td>
<td>80</td>
<td>Tr I</td>
<td>65</td>
<td>Ge III</td>
<td>60</td>
</tr>
<tr>
<td>PL</td>
<td>85</td>
<td>Fe I</td>
<td>110</td>
<td>Ti III</td>
<td>112</td>
</tr>
<tr>
<td>ASens</td>
<td>52/57</td>
<td>Ge I</td>
<td>75</td>
<td>Ta III (L)</td>
<td>150</td>
</tr>
<tr>
<td>PSens</td>
<td>137</td>
<td>Ti I</td>
<td>95</td>
<td>Ta III (H)</td>
<td>25</td>
</tr>
<tr>
<td>DS Min.</td>
<td>70</td>
<td>Ta I (L)</td>
<td>155</td>
<td>Leg III</td>
<td>601</td>
</tr>
<tr>
<td>DS Max.</td>
<td>90</td>
<td>Ta I (H)</td>
<td>30</td>
<td>IP</td>
<td>1747</td>
</tr>
</tbody>
</table>

* including anterior portion of scutum

Type material
The holotype larva (ARS-20180606-1a) is deposited in the Acarological Collection, Ankara University, Department of Plant Protection, Faculty of Agriculture, Dişkapi, Ankara, Turkey.

Remarks
The new species belongs to the genus *Lassenia* based on the following characters: scutum with a pair of long posterior, and a pair of shorter anterior sensilla, plus two pairs of scutalae; anterior sensilla set off on a minute sclerite separate from the rest of the scutum; *Lassenia*-organ anterior to coxa III; anal sclerites with two pairs of setae (see diagnostic characters of *Lassenia* presented by Newell, 1957, page 448). *Lassenia hemsinensis* Noei, Saboori & Çobanoğlu **sp. nov.** differs from *L. lasseni* in the number of setae on palpfemur (2 vs. 5 in *L. lasseni*), NDV (31 vs. 71–80 [fD = 48–53, fV = 23–27]), number of setae on Cx II (1 vs. 2), Cx III (1 vs. 3), Tr II (1 vs. 3), Tr III (1 vs. 3 or 4), Fe I (6 vs. 10) Fe II (6 vs. 10-12), Fe III (6 vs. 9 or 10), shape of coxala 2b and sternal seta 3a (bifurcate vs. simple), scutum (divided vs. undivided), fn Ta (33/36-28/30-26/25 vs. 50-43-40), number of solenidia on Ti I (4 vs. 13), Ti II (2 vs. 4 or 5) Ti III (1 vs. 3); from *L. scutellata* in the number of setae on Cx III (1 vs. 2), Fe III (6 vs. 5), shape of coxala 2b and sternal seta 3a (bifurcate vs. simple), number of solenidia on Ti I (4 vs. 5), number of normal setae on Ge I (4 vs. 5); from *L. furcasetosa* in the number of setae on Fe III (6 vs. 5), the longer PW (75 vs. 57–67), ASB (60 vs. 39–45), SD (122 vs. 105–115), ASens (52/57 vs. 34–40), AL (80 vs. 62–72), PSens (137 vs. 85–90) and IP (1747 vs. 1420–1465); from *L. xymenae* in the number of setae on Cx II (1 vs. 2), Fe III (6 vs. 5), shape of coxala 2b and sternal seta 3a (bifurcate vs. simple), the longer SD (122 vs. 112–116), AP
(65/62 vs. 50), AL (80 vs. 56–60), PSens (137 vs. 110) Ta I (155 vs. 108–112), Ti I (95 vs. 68–72), Ge I (75 vs. 60–62), Fe I (110 vs. 80–92), Ta II (137 vs. 94–100), Ti II (87 vs. 62–68), Ge II (65 vs. 50–56), Fe II (105 vs. 50–56), Ta III (150 vs. 106), Ti III (112 vs. 88–90) Fe III (107 vs. 84–86), IP (1747 vs. 1340) and shorter W (107 vs. 122); from L. castronuoviensis in the number of solenidia on Ta I (1 vs. 2), shape of coxala 2b and sternal seta 3a (bifurcate vs. simple), the longer ASB (60 vs. 45°), PSB (62 vs. 80°), AP (65/62 vs. 46), ASens (52/57 vs. 38), PSens (137 vs. 88), AL (80 vs. 60), Ta I (155 vs. 136), Ge I (75 vs. 62), Fe I (110 vs. 89), Ta II (137 vs. 112), Ti II (87 vs. 65), Fe II (105 vs. 88), Ta III (150 vs. 118), Fe III (107 vs. 87), IP (1747 vs. 1474) and the shorter PSB (62 vs. 80) and from L. novoseljensis in the number of setae on Fe III (6 vs. 5), the longer SD (122 vs. 80–102), ASens (52/57 vs. 36–39), PSens (137 vs. 76–80), AL (80 vs. 46–56), PL (85 vs. 57–65), Ta I (155 vs. 99–108), Ti (95 vs. 59–67), Ge I (75 vs. 47–52), Fe I (110 vs. 72–82), Ta II (137 vs. 86–93), Ti II (87 vs. 55–60), Ge II (65 vs. 42–47), Fe II (105 vs. 64–71), Ta III (150 vs. 95–99), Ti III (112 vs. 79–88), Fe III (107 vs. 70–77) and IP (1747 vs. 1164–1247).

* Haitlinger (2012) reported ASB = 80 and PSB = 45 in Table 2 (page 48) which are typographical errors.

Key to species of Lassenia of the world (larva)

1. Scutum undivided, palpfemur with five setae, Fe I with 10 setae, Ti I with 13 solenidia ..L. lasseni Newell, 1957
 − Scutum divided, palpfemur with two setae, Fe I with 6 setae, Ti I with four or five solenidia2
2. Ti I with five solenidia, Ge I with five normal setae..................................L scutellata Newell, 1957
 − Ti I with four solenidia, Ge I with four normal setae..3
3. Coxa II with two setae ..L. xymenae Haitlinger, 1995
 − Coxa II with one seta..4
4. fn Fe 6-6-5, coxala 2b and sternal seta 3a bifurcate ...5
 − fn Fe 6-6-6, coxala 2b and sternal seta 3a simple or bifurcate...6
 .. L. novoseljensis Haitlinger and Šundić, 2015
6. Coxala 2b and sternal seta 3a bifurcate, Ta I with one solenidion, Fe I 110, Ta III 150..........................
 .. L. heminsensis Noei, Saboori & Çobanoğlu sp. nov.
 − Coxala 2b and sternal seta 3a simple, Ta I with two solenidia, Fe I 89, Ta III 118..........................
 ..L. castronuoviensis Haitlinger, 2012

DISCUSSION

We only observed an inconsistence in normal setae of leg tarsi in the new species, further specimens collected will allow to find a range of normal setae for these segments. But the new species has distinct difference with other species which allows us to describe it based on single specimen.

In the key to species (larva) presented by Haitlinger and Šundić (2015), the character "fn Cx" has been used. This character is not suitable for separating the Lassenia species and can result in misidentification, because coxala 1a is not distinctly off or on coxa I, e.g. Haitlinger and Šundić (2015) reported coxala 1a off coxa I, and Zhang (1988) described sternal seta 3a on coxa III. Therefore, this paper presents an identification key using shape of scutum, number of setae on palpfemur, number of setae on leg femura, number of setae on Cx II, number of solenidia on Ti I, shape of coxala 2b and sternal seta 3a and other characters.
A NEW SPECIES OF _LASSENIA_ FROM TURKEY

REFERENCES

COPYRIGHT

Noei et al. Persian Journal of Acarology is under a free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
A NEW SPECIES OF Lassenia FROM TURKEY

A NEW SPECIES OF Lassenia (Acari: Tanaupodidae) FROM TURKEY

نویسندگان:

Javed Noei, Ahmeneinak, Sultan Cobanoglu, and Reza Saboori

چکیده

گونه جدیدی از Lassenia (Acari: Tanaupodidae) جمع می‌آورند. روی رنگ‌های Rumex sp. (Polygonaceae) شده‌اند. شکل‌گیری از هم‌سنوش، کلیه‌ای برای این گونه‌ها گونه‌های Lassenia تبار توصیف می‌شود. همچنین، کلیه‌ای برای کالبدی گونه‌های Lassenia تبار توصیف می‌شود.

واژگان کلیدی: هم‌سنوش; Lassenia; Trombidiformes; رنگ‌های Rumex sp. (Polygonaceae)

اطلاعات متاله: تاریخ دریافت: 15/5/1397، تاریخ پذیرش: 23/7/1397، تاریخ پذیرش: 1397/7/15/12/6/1397