Open Access Open Access  Restricted Access Subscription Access


DOI: http://dx.doi.org/10.11158/saa.23.4.16

Development, survival and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) on four diets 

Lixia Xie, Yi Yan, Zhi-Qiang Zhang

Abstract


.

The development, survival and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) were determined on four diets (Ephestia kuehniella eggs, Artemia sp. cysts, Typha orientalis pollen, and Tyrophagus curvipenis) in the laboratory at 25 ± 1°C, 80 ± 5% RH, 24 h D: 0 h L. E. kuehniella eggs and T. curvipenis were very suitable for the overall development of S. scimitus to adulthood, with over 90% survival rates. Shrimp cysts were not suitable, with 11.1% survival to adults, and T. orientalis pollen were intermediate, with 50% survival to adults.  S. scimitus immature development was the fastest on T. curvipenis (9.67 ± 0.18 days), and it was also very fast on E. kuehniella eggs, but relatively slow on T. orientalis pollen  (18.26 ± 0.68 days) and the slowest on Artemia cysts (21.36 ± 1.23 days). The female pre-ovipositional period (APOP) averaged less than 3 days on E. kuehniella eggs but over 3 days on T. curvipenis, but mated and unmated females had a similar APOP, regardless of diet. Neither diet nor mating had significant effects on the total pre-ovipositional period from birth to oviposition (around 13 days). The oviposition period averaged 1 to 2 days longer for mated females than unmated ones, regardless of diet, which had no significant effects. Mated females produced 50% more eggs than unmated females when feeding on E. kuehniella eggs, but 69% more than unmated females when feeding on T. curvipenis; the effects of mating were significant, and the effects of diet were different depending on mating status of the predators: fecundity was higher on E. kuehniella eggs (20.21 ± 1.16) than on T. curvipenis (17.07 ± 0.49) only for unmated females.  Most life table parameters (intrinsic rate of population increase r, finite rate of population increase λ, and net reproductive rate R0) were not significantly affected by diet and mating. However, the mean generation time T was shorter in unmated females than in mated ones, and more so when feeding on T. curvipenis. T. curvipenis is easy to rear, so it is considered a very promising diet for S. scimitus as it does not damage plants nor cause allergenic reactions in workers or users. Since T. curvipenis is common on plants, future studies should explore the combined use of foliar predators (e.g. Phytoseiidae) and soil predators for the biocontrol of greenhouse pests (e.g. thrips) using a shared non-pest prey such as T. curvipenis.


References


Akca, I., Ayvaz, T., Yazici, E., Smith, C.L. & Chi, H. (2015) Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. Journal of Economic Entomology, 108, 1466–1478.

https://doi.org/10.1093/jee/tov187

Ali, O., Dunne, R. & Brennan, P. (1997) Biological control of the sciarid fly, Lycoriella solani by the predatory mite, Hypoaspis miles (Acari: Laelapidae) in mushroom crops. Systematic and Applied Acarology, 2, 71–80.

https://doi.org/10.11158/saa.2.1.9

Ali, O., Dunne, R. & Brennan, P. (1999) Effectiveness of the predatory mite Hypoaspis miles (Acari: Mesostigmata: Hypoaspidae) in conjunction with pesticides for control of the mushroom fly Lycoriella solani (Diptera: Sciaridae). Experimental and Applied Acarology, 23, 65–77.

https://doi.org/10.1023/A:1006154008192

Barbosa, M.F. & Moraes, G.J. de (2016) Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Experimental and Applied Acarology, 69(3), 289–296.

https://doi.org/10.1007/s10493-016-0043-4

Bennison, J., Maulden, K. & Maher, H. (2002) Choice of predatory mites for biological control of ground-dwelling stages of western flower thrips within a ‘push–pull’ strategy on pot chrysanthemum. IOBC/WPRS Bulletin, 25, 9–12.

Berndt, O., Poehling, H.-M. & Meyhöfer, R. (2004a) Predation capacity of two predatory laelapid mites on soil dwelling thrips stages. Entomologia Experimentalis et Applicata, 112, 107–115.

https://doi.org/10.1111/j.0013-8703.2004.00185.x

Berndt, O., Meyhöfer, R. & Poehling H.-M. (2004b) The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biological Control, 30, 17–24.

https://doi.org/10.1016/j.biocontrol.2003.09.009

Buitenhuis, R., Murphy, G., Shipp, L., Scott-Dupree, C. (2015) Amblyseius swirskii in greenhouse production systems: A floricultural perspective. Experimental and Applied Acarology, 65, 451–464.

https://doi.org/10.1007/s10493-014-9869-9

Cabrera, A.R., Cloyd, R.A. & Zaborski, E.R. (2005) Development and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) with fungus gnat larvae (Diptera: Sciaridae), potworms (Oligochaeta: Enchytraeidae) or Sancassania aff. sphaerogaster (Acari: Acaridae) as the sole food source. Experimental and Applied Acarology, 36, 71–81.

https://doi.org/10.1007/s10493-005-0242-x

Castilho, R.C., Moraes, G.J. de & Silva, E.S. (2009) The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. International Journal of Pest Management, 55(3), 181–185.

https://doi.org/10.1080/09670870902725783

Chi, H. (1988) Life table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.

https://doi.org/10.1093/ee/17.1.26

Chi, H. (2017) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. http://140.120.197.173/Ecology/ (accessed: April 26, 2017).

Chi, H. & Liu, H. (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24, 225–240.

Chow, A., Chau, A. & Heinz, K.M. (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses. Biological Control, 44, 259–270.

https://doi.org/10.1016/j.biocontrol.2007.11.002

Colloff, M.J., Elizabeth, A.L. & Cook, D.C. (2013) Natural pest control in citrus as an ecosystem service: integrating ecology, economics and management at the farm scale. Biological Control, 67(2), 170–177.

https://doi.org/10.1016/j.biocontrol.2013.07.017

Contreras, J., Lacasa, A., Lorca, M., Sánchez, J.A. & Martínez, M.C. (1996) Localización de la ninfosis de Frankliniella occidentalis (Pergande) en los cultivos de habas de verdeo. Boletín de Sanidad Vegetal Plagas, 22, 351–360.

Delisle, J., Brodeur, J. & Shipp, L. (2015) Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Experimental and Applied Acarology, 65, 483–494.

https://doi.org/10.1007/s10493-014-9862-3

Efron, B. & Tibshirani, R. (1993) An introduction to the bootstrap. New York, NY, Chapman & Hall.

Enkegaard, A., Sardar, M.A. & Brødsgaard, H.F. (1997) The predatory mite Hypoaspis miles: biological and demographic characteristics on two prey species, the mushroom sciarid fly, Lycoriella solani, and the mould mite, Tyrophagus putrescentiae. Entomologia Experimentalis et Applicata, 82, 135–146.

https://doi.org/10.1023/A:1002965115865

Fain, A. & Fauvel, G. (1993) Tyrophagus curvipenis n. sp. from an orchid cultivation in a greenhouse in Portugal (Acari: Acaridae). International Journal of Acarology, 19(1), 95–100.

https://doi.org/10.1080/01647959308683544

Fan, Q.H & Zhang, Z.Q. (2007) Fauna of New Zealand. Vol. 56, Tyrophagus (Acari: Astigmata: Acaridae). Manaaki Whenua Press, Lincoln, New Zealand. 291 pp.

Fernandez-Caldas, E., Iraola, V. & Carnes, J. (2007) Molecular and biochemical properties of storage mites (except Blomia species). Protein and Peptide Letters, 14, 954–959.

Ferragut, F., Garcia-Mari, F., Costa-Comelles, J. & Laborda, R. (1987) Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromus phialatus (Acari: Phytoseiidae). Experimental and Applied Acarology, 3, 317–329.

https://doi.org/10.1007/BF01193168

Freire, R.A.P. & Moraes, G.J. (2007) Mass production of the predatory mite Stratiolaelaps scimitus (Womersley) (Acari: Laelapidae). Systematic and Applied Acarology, 12(2), 117–119.

https://doi.org/10.1080/01647959308683544

Freire, R.A.P., de Moraes, G.J., Silva, E.S., Vaz, A.C. & Castilho, R. de C. (2007) Biological control of Bradysia matogrossensis (Diptera: Sciaridae) in mushroom cultivation with predatory mites. Experimental and Applied Acarology, 42, 87–93.

https://doi.org/10.1007/s10493-007-9075-0

Gerson, U., Smiley, R.L. & Ochoa, R. (2003) Mites (Acari) for pest control. Oxford, Blackwell.

Gerson, U. & Weintraub, P.G. (2007) Mites for the control of pests in protected cultivation. Pest Management Science, 63, 658–676.

https://doi.org/10.1002/ps.1380

Gillespie, D.R. & Quiring, D.M.J. (1990) Biological control of fungus gnats, Bradysia spp. (Diptera: Sciaridae), and western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in greenhouses using a soil-dwelling predatory mite, Geolaelaps sp. nr. aculeifer (Canestrini) (Acari: Laelapidae). The Canadian Entomologists, 122, 975–983.

https://doi.org/10.4039/Ent122975-9

Griffiths, D.A. (1964) A revision of the genus Acarus L., 1758 (Acaridae, Acarina). Bulletin of British Museum Natural History (Zoology), 11, 415–464.

Hafez, S.M. & Tharwat, M.E. (1989) Acarid mite infestation in garlic field and storage (Egypt). Annals of Agricultural Science (Egypt), 34(1), 441–448.

Halliday R. (2003) Health and safety issues related to mites in stored grain. Proceedings of the Australian Postharvest Technical Conference, pp. 116–118.

Hoy, M.A. (2011) Agricultural Acarology: Introduction to Integrated Mite Management. Florida, CRC Press, 430 pp.

Hughes, A.M. (1976) The mites of stored food and houses. 2nd edn. London, Her Majesty’s Stationary Office, 400 pp.

Ignatowicz, S. (1974) Observations on the biology and development of Hypoaspis aculeifer Canestrini, 1885 (Acarina: Gamasides). Zoologica Poloniae, 24, 41–59.

Jess, S. & Kilpatrick, M. (2000) An integrated approach to the control of Lycoriella solani (Diptera: Sciaridae) during production of the cultivated mushroom (Agaricus bisporus). Pest Management Science, 56, 477–485.

https://doi.org/10.1002/(SICI)1526-4998(200005)56:5<477::AID-PS161>3.0.CO;2-T

Kar, F., Lin, S. & Zhang, Z.Q. (2015) Neocypholaelaps novaehollandiae Evans (Acari: Ameroseiidae) rediscovered: Experiments on its life history and behaviour. The New Zealand Entomologist, 38, 126–133.

https://doi.org/10.1080/00779962.2015.1043043

Kiss, E, Szénási, Á., Neményi, A. & Kontschán, J. (2017) Can we use the predatory mites against the invasive bamboo pest spider mites? Acta Phytopathologica et Entomologica Hungarica, 52(1), 1–6.

https://doi.org/10.1556/038.52.2017.014

Lee, M.H. & Zhang, Z.Q. (2016) Habitat structure and its influence on populations of Amblydromalus limonicus (Acari: Phytoseiidae). Systematic and Applied Acarology, 21(10), 1361–1378.

https://doi.org/10.11158/saa.21.10.7

Lesna, I., Sabelis, M.W., Bolland, H.R. & Conijn, C.G.M. (1995) Candidate natural enemies for control of Rhizoglyphus robini Claparede (Acari: Astigmata) in lily bulbs: exploration in the field and pre-selection in the laboratory. Experimental and Applied Acarology, 19, 655–669.

https://doi.org/1007/BF00145254

Lesna, I. Sabelis, M.W., van Niekerk, T.G.C.M. & Komdeur, J. (2012) Laboratory tests for controlling poultry red mites (Dermanyssus gallinae) with predatory mites in small ‘laying hen’ cages. Experimental and Applied Acarology, 58, 371–383.

https://doi.org/10.1007/s10493-012-9596-z

Liu, J.F. & Zhang, Z.Q. (2017) Development, survival and reproduction of a New Zealand strain of Amblydromalus limonicus (Acari: Phytoseiidae) on Typha orientalis pollen, Ephestia kuehniella eggs, and an artificial diet. International Journal of Acarology, 43(2), 153–159.

https://doi.org/10.1080/01647954.2016.1273972

Liu, T., Jin, D.C., Guo, J.J. & Li, L. (2006) Development and growth of Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) bred under different temperatures with different nutrients. Acta Entomologica Sinica, 49(4), 714–718.

Lobbes, P. & Schotten, C. (1980) Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Zeitschrift Für Angewandte Entomologie, 90, 9–22.

https://doi.org/10.1111/j.1439-0418.1980.tb03497.x

Matsumoto, K. (1962) Studies on the environmental factors for the breeding of grain mites. Part II. On the breeding of Tyrophagus dimidiatus in various stored food products. Japanese Journal of Sanitary Zoology, 13, 16–19.

https://doi.org/10.7601/mez.13.16

Mendyk, R.B. (2015) Preliminary notes on the use of the predatory soil mite Stratiolaelaps scimitus (Acari: Laelapidae) as a biological control agent for acariasis in lizards. Journal of Herpetological Medicine and Surgery, 25(1–2), 24–27.

https://doi.org/10.5818/1529-9651-25.1.24

Moreira, G.F. & Moraes, G.J. (2015) The potential of free-living Laelapid mites (Mesostigmata: Laelapidae) as biological control agents. In: Carrillo, D., de Moraes, G.J., Pena, J.E. (eds.) Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms. Cham, Switzerland, Springer International, pp. 77–102.

Mouden, S., Sarmiento, K.F., Klinkhamer, P.G.L. & Leiss, K.A. (2017) Integrated pest management in western flower thrips: Past, present and future. Pest Management of Science, 73, 813–822.

https://doi.org/10.1002/ps.4531

Navarro-Campos, C., Pekas, A., Moraza, M.L., Aguilara, A. & Garcia-María, F. (2012) Soil-dwelling predatory mites in citrus: Their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera: Thripidae). Biological Control, 63, 201–209.

https://doi.org/10.1016/j.biocontrol.2012.07.007

Navarro-Campos, C., Wackers, F.L. & Pekas, A. (2016) Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Experimental and Applied Acarology, 70, 69–78.

https://doi.org/10.1007/s10493-016-0061-2

Nguyen, D.T., Vangansbeke, D. & De Clercq, P. (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Experimental and Applied Acarology, 62, 181–194.

https://doi.org/10.1007/s10493-013-9749-8

Overmeer, W.P.J. (1985) Rearing and handling. In: Helle, W. & Sabelis, M.W. (eds.) Spider Mites, Their Biology, Natural Enemies and Control. Vol. 1b. Elsevier, Amsterdam, pp. 162–170.

Pérez-Sayas, C., Aguilar-Fenollosa, E., Hurtado, M.A., Jaques, J.A. & Pina, T. (2017) When do predatory mites (Phytoseiidae) attack?: Understanding their diel and seasonal predation patterns. Insect Science. https://doi.org/10.1111/1744-7917.12495

Premachandra, W.T.S., Borgemeister, C., Berndt, O., Ehlers, R.-U. & Poehling, H.-M. (2003) Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biocontrol, 48, 529–541.

https://doi.org/10.1023/A:1025703512113

Ragusa, S., Zedan, M.A. & Sciacchitano, M.A. (1989) The effects of food from plant and animal sources on the development and egg production of the predaceous mite Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermanyssidae). Redia, 69, 481–488.

Rahman, T., Broughton, S. & Spafford, H. (2011) Effect of spinosad and predatory mites on control of Frankliniella occidentalis in three strawberry cultivars. Entomologia Experimentalis et Applicata, 138, 154–161.

https://doi.org/10.1111/j.1570-7458.2010.01085.x

Rat-Morris, E. (1999) Biological control of Thrips tabaci on protected leek seed crops. IOBC/WPRS Bulletin, 22, 201–204.

Saito, T. & Brownbridge, M. (2016) Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control, 92, 92–100.

https://doi.org/10.1016/j.biocontrol.2015.10.003

Schereef, G.M., Soliman, Z.R. & Afifi, A.M. (1980) Economic importance of the mite Hypoaspis miles Berlese (Mesostigmata: Laelapidae) and its life history. Zoological Society of Egypt, Bulletin, 30, 103–108.

Sinha, R. (1979) Role of Acarina in the stored grain ecosystem. Recent Advances in Acarology, 1, 263–271.

Sinha, R.N. & Mills, J.T. (1968) Feeding and reproduction of the grain mite and the mushroom mite on some species of Penicillium. Journal of Economic Entomology, 61(6), 1548–1552.

https://doi.org/10.1093/jee/61.6.1548

Steiner, M., Goodwin, S. & Wellham, T. (1999) A simplified rearing method for Stratiolaelaps (Hypoaspis) miles (Acari: Laelapidae). IOBC/WPRS Bulletin, 22, 241–242.

Tuan, S.J., Yeh, C.C., Atlihan, R. & Chi, H. (2016) Linking life table and predation rate for biological control: A comparative study of Eocanthecona furcellata (Hemiptera: Pentatomidae) fed on Spodoptera litura (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 109, 13–24.

https://doi.org/10.1093/jee/tov265

van Lenteren, J.C. (2003) Commercial availability of biological control agents. In: van Lenteren J.C. (ed.) Quality Control and Production of Biological Control Agents: Theory and Testing Procedures. Wallingford, England, CABI Publishing, pp. 167–178.

Van Rijn, P.C.J. & Tanigoshi, L.K. (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): Dietary range and life history. Experimental Applied Acarology, 23, 785–802.

https://doi.org/10.1023/A:1006227704122

Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L. & De Clercq, P. (2014a) Food supplementation affects interactions between a phytoseiid predator and its omnivorous prey. Biological Control, 76, 95–100.

https://doi.org/10.1016/j.biocontrol.2014.06.001

Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L. & De Clercq, P. (2014b) Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl, 59, 67–77.

https://doi.org/10.1007/s10526-013-9548-5

Vantornhout, I., Minnaert, H., Tirry, L. & De Clercq, P. (2004) Effect of pollen, natural prey and factitious prey on the development of Iphiseius degenerans. Biocontrol, 49, 627– 644.

https://doi.org/10.1007/s10526-004-5280-5

Wackers, F.L. (2005) Suitability of (extra) floral nectar, pollen, and honeydew as insect food sources. In: Wackers, F.L., van Rijn, P.C. & Bruin, J. (eds) Plant-provided food for carnivorous insects. Cambridge, Cambridge University Press, pp. 17–74.

Wen, M.F., Chi, H., Lian, Y.X., Zheng, Y.H., Fan, Q.H. & You, M.S. (2017) Population characteristics of Macrocheles glaber (Acari: Macrochelidae) and Stratiolaelaps scimitus (Acari: Laelapidae) reared on a mushroom fly Coboldia fuscipes (Diptera: Scatopsidae). Insect Science, 1–29.

https://doi.org/10.1111/1744-7917.12511

Wright, E. & Chambers, R. (1994) The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciaridae). Entomophaga, 39, 225–235.

https://doi.org/10.1007/BF02372360

Wu, S., Gao, Y., Xu, X., Wang, E., Wang, Y. & Lei, Z. (2014) Evaluation of Stratiolaelaps scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Science & Technology, 24, 1110–1121.

https://doi.org/10.1080/09583157.2014.924478

Ydergaard, S., Enkegaard, A. & Brødsgaard, H.F. (1997) The predatory mite Hypoaspis miles: Temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomologia Experimentalis et Applicata, 85, 177–187.

https://doi.org/10.1046/j.1570-7458.1997.00248.x

Ye, S.S., & Zhang, Z.Q. (2014) Age and size at maturity in Tyrophagus curvipenis (Acari: Acaridae) when fed on three different diets. Systematic and Applied Acarology, 19(4), 506–512.

https://doi.org/10.11158/saa.19.4.14

Zdarkova, E. (1991) Stored product acarology. Modern Acarology, 1, 211–218.

Zhang, Z. (2003) Mites of Greenhouses: Identification, Biology and Control. Wallingford, England, CABI Publishing, 244 pp.

https://doi.org/10.1079/9780851995908.0000


Refbacks

  • There are currently no refbacks.


An international journal of the Systematic and Applied Acarology Society

ISSN 1362-1971