Open Access Open Access  Restricted Access Subscription Access


Interactions among food diets and rearing substrates affect development and population growth rate of Typhlodromus bagdasarjani

Elham Riahi, Yaghoub Fathipour, Ali A. Talebi, Mohammad Mehrabadi


Notwithstanding the advantageous traits of Typhlodromus bagdasarjani Wainstein and Arutunjan to feed on alternative food such as pollen ensuring the long-term control of greenhouses pests, the nutritional ecology and the role of this predator in biological pest control are rarely addressed. In the current study, the predator’s development and reproduction on three food sources including Tetranychus urticae Koch, almond pollen, as well as T. urticae+ almond pollen; and the no food condition were evaluated. Additionally, all diets were tested on both artificial and leaf-based substrates to assess the potential host plant effects on the predator’s performance. Although all larvae on both rearing substrates successfully developed into protonymphal stage, they did not succeed to reach the next stage. Development of T. bagdasarjani was shorter, both female and male, on artificial substrate mainly feeding on almond pollen. Females feeding on almond pollen and almond pollen + T. urticae on artificial substrates had the highest intrinsic and finite rate of increase as well as oviposition rate. Consequently, almond pollen could be used as a conservation management tool to support the early buildup of pre-established natural populations of T. bagdasarjani in open field crops.


Almond pollen, Tetranychus urticae, Leaf-based substrate, Artificial substrate, Alternative food, Phytoseiidae


Adar, E., Inbar, M., Gal, S., Doron, N., Zhang, Z.Q. & Palevsky, E. (2012) Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Experimental and Applied Acarology, 58, 341–357.

Badii, M.H. & McMurtry, J.A. (1983) Effect of different foods on development, reproduction and survival of Phytoseiulus longipes (Acarina: Phytoseiidae). Entomophaga, 28, 161–166.

Chant, D. (1959) Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southern England. Part II. A taxonomic review of the family Phytoseiidae with description of 38 new species. The Canadian Entomologist, 91, 1–116.

Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1), 26–34.

Chi, H. (2016) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available on: http://140. 120.197.173/Ecology/Download/TWOSEX-MSChart.rar. (accessed February 2016).

Chi, H. & Liu, H. (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 24, 225–240.

Chittenden, A.R. & Saito, Y. (2001) Why are there feeding and non-feeding larvae in phytoseiid mites (Acari: Phytoseiidae)? Journal of Ethology, 19, 55–62.

Grostal, R. & O’Dowd, D.J. (1994) Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia, 97, 308–315.

Fathipour, Y. & Maleknia, B. (2016) Mite Predators. In: Omkar (ed.) Ecofriendly Pest Management for Food Security San Diego, USA, Elsevier, pp. 329–366.

Ganjisaffar, F., Fathipour, Y. & Kamali, K. (2011a) Temperature-dependent development and life table parameters of Typhlodromus bagdasarjani (Phytoseiidae) fed on two-spotted spider mite. Experimental and Applied Acarology, 55, 256–272.

Ganjisaffar, F., Fathipour, Y. & Kamali, K. (2011b) Effect of temperature on prey consumption of Typhlodromus bagdasarjani (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 37(5), 32–46.

Hocherl, N., Siede, R., Illies, I., Gatschenberger, H. & Tautz, J. (2012) Evaluation of the nutritive value of maize for honey bees. Journal of Insect Physiology, 58, 278–285.

Hoogerbrugge, H., van Houten, Y.M., Knapp, M. & Bolckmans, K. (2011) Biological control of thrips and whitefly on strawberries with Amblydromalus limonicus and Amblyseius swirskii. IOBC/WPRS Bull, 68, 65–69.

Huang, Y.B., & Chi, H. (2012) Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agricultural & Forest Entomology, 61, 37–45.

Khanamani, M., Fathipour, Y. & Hajiqanbar, H. (2015) Assessing compatibility of the predatory mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and resistant eggplant cultivar in a tritrophic system. Annals of the Entomological Society of America, 108(4), 501–512.

Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017b) Evaluation of different artificial diets for rearing the predatory mite Neoseiulus californicus (Acari: Phytoseiidae): diet-dependent life table studies. Acarologia, 57(2), 407–419.

Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017c) How pollen supplementary diet affect life table and predation capacity of Neoseiulus californicus on two-spotted spider mite. Systematic and Applied Acarology, 22(1), 135–147.

Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017a) Linking pollen quality and performance of Neoseiulus californicus (Acari: Phytoseiidae) in two-spotted spider mite management programmes. Pest Management Science, 73(2), 452–461.

Khanamani, M., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017d) Quantitative analysis of long-term mass rearing of Neoseiulus californicus (Acari: Phytoseiidae) on almond pollen. Journal of Economic Entomology, 110(4), 1442–1450.

Kostiainen, T. & Hoy, M.A. (1994) Egg-harvesting allows large scale rearing of Amblyseius finlandicus (Acari: Phytoseiidae) in the laboratory. Experimental and Applied Acarology, 18, 155–165.

McMurtry, J.A. & Croft, B.A. (1997) Life-style of phytoseiid mites and their role in biological control. Annual Review of Entomology, 42, 291–321.

McMurtry, J.A., De Moraes, G.J. & Sourassou, N.F. (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae). Systematic and Applied Acarology, 18, 297–320.

Momen, F. & El-Borolossy, M. (2010) Juvenile survival and development in three phytoseiid species (Acari: Phytoseiidae) feeding on con- and heterospecific immatures. Acta Phytopathologica et Entomologica Hungarica, 45(2), 349–357.

Nguyen, D.T., Vangansbeke, D. & De Clercq, P. (2015a) Performance of four species of phytoseiid mites on artificial and natural diets. Biological Control, 80, 56–62.

Nguyen, D.T., Bouguet, V., Spranghers, T., Vangansbeke, D. & De Clercq, P. (2015b) Beneficial effect of supplementing an artificial diet for Amblyseius swirskii with Hermetia illucens haemolymph. Journal of Applied Entomology, 139 (5), 342–351.

Nomikou, M., Janssen, A. & Sabelis, M.W. (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental and Applied Acarology, 31, 15–26.

Nomikou, M., Sabelis, M.W. & Janssen, A. (2010) Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl, 55(2), 253–260.

Nomikou, M., Janssen, A., Schraag, R. & Sabelis, M.W. (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental and Applied Acarology, 27(1–2), 57–68.

Pappas, M.L., Xanthis, C., Samaras, K., Koveos, D.S. & Broufas, G.D. (2013) Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests. Experimental and Applied Acarology, 61, 387–401.

Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2016) Pollen quality and predator viability: Life table of Typhlodromus bagdasarjani on seven different plant pollens and two-spotted spider mite. Systematic and Applied Acarology, 21, 1399–1412.

Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017a) Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annals of the Entomological Society of America, 110, 244–253.

Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017b) Natural diets versus factitious prey: Comparative effects on development, fecundity and life table of Amblyseius swirskii (Acari: Phytoseiidae). Systematic and Applied Acarology, 22, 711–723.

Riahi, E., Fathipour, Y., Talebi, A.A. & Mehrabadi, M. (2017c) Attempt to develop cost-effective rearing of Amblyseius swirskii (Acari: Phytoseiidae): assessment of different artificial diets. Journal of Economic Entomology, 110(4), 1525–1532.

Vangansbeke, D., Nguyen, D.T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L. & De Clercq, P. (2014) Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl, 59(1), 67–77.

van Rijn, P.C.J. & Tanigoshi, L.K. (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental and Applied Acarology, 23, 785– 202.

van Rijn, P.C.J., Van Houten, Y.M. & Sabelis, M.W. (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83(10), 2664–2679.


  • There are currently no refbacks.

An international journal of the Systematic and Applied Acarology Society

ISSN 1362-1971